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Abstract

Introducing flexible covariance functions is critical for interpolating spatial data
since the properties of interpolated surfaces depend on the covariance function
used for Kriging. An extensive literature is devoted to covariance functions
on Euclidean spaces, where the Matérn covariance family is a valid and flex-
ible parametric family capable of controlling the smoothness of corresponding
stochastic processes. Many applications in environmental statistics involve data
located on spheres, where less is known about properties of covariance functions,
and where the Matérn is not generally a valid model with great circle distance
metric. In this paper, we advance the understanding of covariance functions on
spheres by defining the notion of and proving a characterization theorem for m
times mean square differentiable processes on d-dimensional spheres. Stochas-
tic processes on spheres are commonly constructed by restricting processes on
Euclidean spaces to spheres of lower dimension. We prove that the resulting
sphere-restricted process retains its differentiability properties, which has the
important implication that the Matérn family retains its full range of smooth-
ness when applied to spheres so long as Euclidean distance is used. The restric-
tion operation has been questioned for using Euclidean instead of great circle
distance. To address this question, we construct several new covariance func-
tions and compare them to the Matérn with Euclidean distance on the task
of interpolating smooth and non-smooth datasets. The Matérn with Euclidean
distance is not outperformed by the new covariance functions or the existing co-
variance functions, so we recommend using the Matérn with Euclidean distance
due to the ease with which it can be computed.

Keywords: Kriging, Fourier series, positive definite functions

1. Introduction

When modeling dependent spatial data, the covariance function used is cru-
cial for producing accurate predictions and estimating prediction uncertainties.
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Statistical theory (Stein, 1999; Zhang, 2004) shows that when the goal is inter-
polation of highly dependent data packed tightly on a compact domain, it is of
utmost importance to correctly specify the local properties of the process, which
are determined by the behavior of the covariance function near the origin. In
recent years the Matérn family of covariance functions has gained widespread
popularity in spatial statistics (Guttorp and Gneiting, 2006) due partly to its
ability to control the local behavior of the process. Specifically, let Z(x), x ∈ Rd,
be a random field. The isotropic Matérn covariance function is given by

M(‖h‖) = Cov(Z(x), Z(x+ h)) =
σ2

2ν−1Γ(ν)
Kν(α‖h‖)(α‖h‖)

ν , (1)

where σ2, α, ν > 0, and Kν is the modified Bessel function of the second kind.
The popularity of the Matérn is also due partly to this representation, which
allows the function to be computed by way of rapidly converging series expan-
sions for the Bessel function (Digital Library of Mathematical Functions, 2012,
Chapter 10). We say that M is isotropic because it depends on the locations x
and x+h only through the Euclidean distance ‖h‖ between them. The param-
eter of interest here is ν, which controls the smoothness of the process, defined
in terms of its mean square differentiability: a process on a Euclidean space that
has covariance function M has m mean square derivatives if and only if ν > m.

In environmental statistics, we often encounter data associated with loca-
tions on the surface of the Earth, for example observations from satellites or
output from climate models, and in astronomy and cosmology, the observations
are often associated with an azimuth and altitude in the sky, so it is important
to introduce flexible classes of covariance functions that are valid on spheres.
Marinucci and Peccati (2011) provide a broad overview of the theory of random
fields on spheres. The question of validity of covariance functions on spheres has
been studied extensively by Huang et al. (2011) and further by Gneiting (2013),
who proved that many of the commonly used covariance functions on Euclidean
spaces are valid on spheres when Euclidean distance is replaced by great circle
distance–the more natural distance metric on a sphere. However, the Matérn is
positive definite with great circle distance only if ν ≤ 1/2. The fact that the va-
lidity of the Matérn on spheres is tied to the value of the smoothness parameter
handcuffs its usefulness for modeling a wide range of smooth and non-smooth
spatial data. Recently there have been efforts to introduce new covariance func-
tions on spheres. Ma (2012), Du et al. (2013), and Ma (2014) provide closed-
form covariance functions and variogram functions for vector-valued processes
on spheres, and Heaton et al. (2014) defines covariance functions on spheres
in terms of kernel convolutions. However, none of the functions any of these
authors studied possess the flexibility to specify the smoothness of the process
like the Matérn does. An exception is Jeong and Jun (2015), who introduce a
“Matérn-like” covariance function on spheres but this covariance function must
be approximated and does not outperform much simpler alternatives.

Spheres are subsets of Euclidean spaces, so a covariance function that is valid
on a Euclidean space–such as the Matérn–can be applied to a sphere of lower
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dimension if the Euclidean distance is used. More formally, for d ≥ 1, define
the d-sphere as Sd = {x ∈ Rd+1 : ‖x‖ = 1} and the great circle distance metric
as θ(x,y) = arccos(〈x,y〉) for x,y ∈ Sd, where 〈·, ·〉 denotes the usual inner
product on Rd. The Euclidean distance between two points on a sphere, which
is also known as the chordal distance, can be expressed in terms of great circle
distance as ‖x − y‖ = 2 sin(θ(x,y)/2), so if K is a valid isotropic covariance
function on Rd+1, then ψ(θ) = K(2 sin(θ/2)) is a valid covariance function on
Sd (Yadrenko, 1983; Yaglom, 1987). Stated more simply, this approach starts
with a valid process on Rd+1 and restricts it to the sphere Sd, so while the
process on Sd is trivially valid, we must use the chordal distance in calculations
of the covariance. In what follows, we refer to the Matérn with chordal distance,
ϕ(θ) =M(2 sin(θ/2)), as the chordal Matérn covariance function.

Our work is concerned with understanding the properties of covariance func-
tions on spheres, specifically with respect to mean square differentiability, and
exploring the modeling capabilities of the chordal Matérn with real data. In
Section 2, we define the notion of a mean square differentiable process on a
sphere and provide a concise theorem characterizing m times mean square dif-
ferentiable processes in terms of their covariance functions and Fourier series.
Since it is common to use the restriction construction to define valid covariance
functions on spheres, we prove a corollary stating that the process restricted
to a sphere retains the differentiability properties of the original process. This
result has the important implication that the chordal Matérn retains the full
flexibility that the Matérn does, in terms of smoothness.

While the restriction operation is convenient due to the abundance of flex-
ible models on Euclidean spaces, such as the Matérn, Gneiting (2013) argued
that this “may result in physically unrealistic distortions.” It is important to
understand the implications of defining a covariance function in terms of chordal
distance and whether such covariance functions will poorly model data observed
over large regions on a sphere. There have been some efforts to compare the
two distance metrics, most notably Banerjee (2005), who fits parametric spatial
covariance functions to data observed at locations on the Earth. The results
there suggested that using the chordal versus great circle distance may produce
slightly different model estimates. However, the observation region for those
data was quite small compared to the entire globe–less than 5◦×5◦ latitude ×
longitude–and the study considered the Matérn with great circle distance, which
is not generally a positive definite function on a sphere, so a more thorough in-
vestigation is warranted.

To provide insight into the appropriateness of the chordal Matérn for data
observed on spheres, we compare its ability to model and interpolate smooth
and non-smooth datasets to that of a number of existing and new covariance
functions that we introduce in Section 3. The existing covariance functions were
introduced in Huang et al. (2011) and Gneiting (2013) and consist of covariance
functions that are valid on Euclidean spaces that remain valid on spheres when
Euclidean distance is replaced by great circle distance. In Section 3, we intro-
duce several new families of covariance functions capable of modeling smooth
and nonsmooth processes and whose constructions respect circular and spheri-
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cal geometry. Using existing theoretical results and our new theoretical results
we outline the differentiability properties of the new covariance functions. We
also discuss computational considerations and provide closed forms for the co-
variance functions in some cases, one of which corresponds to the characteristic
function of an integer-valued version of the t-distribution.

The covariance functions are compared in Section 4 on two datasets of dif-
ferent degrees of smoothness, both of which span large distances around the
Earth. We find that for the problem of dense interpolation, the chordal Matérn
is not outperformed by any of the new or existing covariance functions, and it
is sometimes a substantial improvement in terms of loglikelihood and predictive
performance over existing covariance functions that take great circle distance as
the argument. Finally, we conclude in Section 5 with a discussion of our work
and practical practical recommendations for choosing covariance functions to
model data observed on spheres.

2. Mean Square Differentiability on Spheres

Following Gneiting (2013), a function h : Sd× Sd → R is positive definite on
the d-sphere if

n∑

j=1

n∑

k=1

cjckh(xj,xk) ≥ 0 (2)

for all n, locations x1, . . . ,xn ∈ Sd, and constants c1, . . . , cn ∈ R. A function is
strictly positive definite if the inequality in (2) is strict whenever at least one
of the constants is non-zero. Positive definiteness ensures that the variance of
all linear combinations of observations is positive. The function h is isotropic if
there exists a function ψ : [0, π] → R such that

h(x,y) = ψ(θ(x,y)) for all x,y ∈ S
d.

It is important to note that the assumption of isotropy is often not justifiable for
data on the surface of the Earth. However, many existing methods for generat-
ing anisotropic covariance functions arise from making modifications to isotropic
covariance functions. This includes deformations (Sampson and Guttorp, 1992;
Anderes and Stein, 2008), partial differential equation approaches (Jun and Stein,
2007), and convolutions (Higdon, 1998; Paciorek and Schervish, 2006). Thus,
even if one is ultimately interested in anisotropic models, careful study of the
properties of isotropic models remains vital.

As discussed in the introduction, correctly specifying the local properties of
a process is important when one is interested in interpolating spatial data and
providing accurate estimates of prediction uncertainty. Marinucci and Peccati
(2013) proved that isotropy of a random field on a compact group (of which
spheres are important examples) entails mean square continuity of the random
field. The local properties of a process can be further described with respect to
the number of mean square derivatives it possesses. For isotropic processes on
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Figure 1: Illustration of a great circle X on the two-sphere S2 and the definition of φ.

S2, Hitczenko and Stein (2012) gave conditions for mean square differentiability
when the covariance function is expressed in terms of its spherical harmonic rep-
resentation. Lang and Schwab (2013) give further results on Hölder continuity
and differentiability of sample paths of the process. Here, we give conditions
that can be used to determine the number of mean square derivatives directly
from the covariance function or from its Fourier series representation, and the
results apply to spheres of arbitrary dimension.

Let Z(x), x ∈ S
d be a stochastic process on the d-sphere with isotropic

covariance function ψ, and let Hψ be the Hilbert space of linear combinations
of Z with finite variance. Thus Hψ is the set of all random variables with
finite variance that can be expressed as

∑n
k=1 akZ(xk) with ak ∈ R and n

possibly infinite. Derivatives of random or deterministic functions on Euclidean
spaces must be defined with respect to a direction along a straight line. On
spheres, the analog of a straight line is a geodesic or a great circle, so to study
the derivatives of random functions on spheres, we must define the notion of a
great circle, which is the intersection of Sd with any plane that passes through
the origin. A sphere contains infinitely many great circles. Examples can be
described using the analogy of the Earth as a sphere; lines of longitude and the
equator lie along great circles, whereas non-equatorial lines of latitude do not.

Suppose X is the collection of all the points along one great circle. The great
circle X and S1 are isometric since rotations in Euclidean spaces are isometric
isomorphisms, and S1 and [0, 2π) are isometric if we define distance in [0, 2π)
to be d(φ1, φ2) = min(|φ1 − φ2|, 2π− |φ1 − φ2|). Thus there there is a distance-
preserving mapping φ : X → [0, 2π) that associates each point on a great circle
with a unique angle. In Figure 1, we show an example with φ(x0) = 0 and a
“clockwise” orientation.

Next, for some choice of φ, we define ZX(φ(x)) = Z(x) to be the restriction
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of Z to X. Then we say that ZX is mean square differentiable at x if the limit

Z
(1)
X

(φ(x)) = lim
ε→0

ZX(φ(x) + ε)− ZX(φ(x))

ε

exists in Hψ , and we say that Z is mean square differentiable at x if Z
(1)
X

(φ(x))
exists for every X that contains x. The entire process Z is mean square dif-
ferentiable if Z is mean square differentiable at x for every x ⊂ Sd. Clearly,
if the process is isotropic, mean square differentiability at one point along one
great circle implies mean square differentiability of the entire process. To de-
fine higher order differentiability, we say that Z is m + 1 times mean square
differentiable at x if Z is m times mean square differentiable, and

Z
(m+1)
X

(φ(x)) = lim
ε→0

Z
(m)
X

(φ(x) + ε)− Z
(m)
X

(φ(x))

ε

exists for every X that contains x. Then Z is m + 1 times mean square differ-
entiable if Z is m+ 1 times mean square differentiable at x for every x ⊂ Sd.

Armed with a proper definition of mean square differentiability on spheres, it
is straightforward to prove the following theorem characterizing isotropic mean
square differentiable processes on spheres.

Theorem 1. If an isotropic process Z on Sd has covariance function

ψ(θ) =
1

2π

∑

k∈Z

fk exp(ikθ),

then the following statements are equivalent:

1. Z is m times mean square differentiable.

2.
∑∞

k=−∞ k2mfk <∞.

3. ψ2m(0) exists and is finite.

The proof is given in Appendix A. Condition 2 on the Fourier coefficients is
useful both in practice, since in Section 3 we show that valid covariance functions
on S3 are easily specified via their Fourier coefficients, and in theory since every
covariance function is embeddable in a 2π-periodic function and thus has a
Fourier series representation.

It is common practice to restrict a process on a Euclidean space to a sphere
of lower dimension, so it is of interest to know how this operation affects the
mean square differentiability properties of the process on a sphere. The following
corollary follows from Theorem 1 and gives credence to the idea that restricting
a process to a sphere does not distort the local properties of the process.

Corollary 1. If K(h) is the covariance function for an isotropic, m times

mean square differentiable process on Rd+1, then ψ(θ) = K(2 sin(θ/2)) is the

covariance function for an isotropic, m times mean square differentiable process

on S
d.
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Proof. Since K is the covariance function for an m times mean square differ-
entiable process on Rd+1, the derivatives K(j)(0) exist and are finite for all
j ≤ 2m. The function ψ(θ) = K(2 sin(θ/2)) is always the covariance function
for an isotropic process on Sd. According to Theorem 1, to prove that the
resulting process is m times mean square differentiable on S

d, we must show
that ψ(2m)(0) exists and is finite. Writing f(θ) = 2 sin(θ/2), by Faà di Bruno’s
formula for derivatives of composite functions (Johnson, 2002),

ψ(2m)(θ) =
∑ (2m)!

b1!b2! · · · b2m!
K(j)(f(θ))

(
f ′(θ)

1!

)b1 (f ′′(θ)

2!

)b2
· · ·

(
f (2m)(θ)

(2m)!

)b2m
,

where the sum is over all nonnegative integer solutions b1, . . . , b2m of b1 +2b2+
· · ·+2mb2m = 2m, with j = b1 + · · ·+ b2m. The largest value of j that appears
in the sum is when b1 = 2m and bi = 0 for all i 6= 1, which gives j = 2m. Since
K(j)(0) exists and is finite for all j ≤ 2m, ψ(2m)(0) must exist and be finite as
well, since powers of the derivatives of f(θ) = 2 sin(θ/2) are analytic, and the
sum has finitely many terms.

Corollary 1 shows that one can construct valid covariance functions on
spheres with varying degrees of smoothness by restricting flexible covariance
functions that are valid on Euclidean spaces, like the Matérn for example, to
spheres of lower dimension. As noted in the introduction, some authors have
questioned this practice since it requires the use of the chordal distance instead
of the more natural great circle distance. To address this issue, we construct in
Section 3 several new covariance functions whose construction respects circular
and spherical geometry, and in Section 4 we compare the various models to each
other and to a number of existing covariance functions on two sets of data.

3. Construction of Flexible Covariance Functions on Spheres

Commonly, practitioners analyze data associated with locations on the sur-
face of the Earth, so it is of interest to study covariance functions that are valid
on S2 specifically. The usual method of specifying an isotropic function on S2

is through the coefficients {bk} in its Legendre polynomial representation,

ψ(θ) =

∞∑

k=0

bkPk(cos θ), (3)

where Pk is the kth Legendre polynomial. Schoenberg (1942) proved that bk
nonnegative and summable guarantees that ψ is nonnegative definite on S2.
Terdik (2013) gives numerous examples of covariance functions constructed with
the representation in (3). Using Theorem A in Hitczenko and Stein (2012), it is
straightforward to write down flexible classes of covariance functions on S2, since
the number of mean square derivatives of a process with covariance function (3)
is controlled by the rate of decay of {bk}. Consider the following example:
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Example 1:

ψ(θ) =

∞∑

k=0

σ2

(α2 + k2)ν+1/2
Pk(cos θ) (4)

This covariance function has three parameters σ2, α, ν > 0, with σ2 controlling
the variance, 1/α controlling the spatial range, and ν controlling the smoothness;
Theorem A in Hitczenko and Stein (2012) can be used to show that processes
with this covariance function are m times mean square differentiable if and only
if ν > m. In this paper, we refer to the covariance function in (4) as the Legendre-
Matérn covariance function. The connection to the Matérn covariance function
should be clear to those familiar with its spectral density, which is proportional
to (α2+ω2)−ν−1/2. The practical use of Legendre polynomial representations is
limited due to the difficulty of obtaining closed-form expressions for the infinite
sum. We consider truncations of the sum in (4) and write Legendre-Matérn (N)
to denote a truncation after N terms.

Truncations of (3) allow for implementation of the covariance functions, but
truncations are not strictly positive definite since only a finite number of bk
are nonzero (Chen et al., 2003), which could lead to exactly singular covariance
matrices. Further, if ν is small in (4), the sum is slow to converge, and thus
a prohibitively large number of terms could be required to achieve a desired
accuracy. We present a concrete example of this problem in Section 4. For
these reasons, we consider a Fourier series representation due to the abundance
of analytic results on Fourier series:

ψ(θ) =
1

2π

∑

k∈Z

fk exp(ikθ). (5)

Since ψ(θ) must be real and even, we require fk real and even as well. Gneiting
(2013) showed that if in addition, the coefficients fk are positive, summable, and
fk−fk+2 > 0 for every k ≥ 0, then ψ(θ) is positive definite on S3, and therefore
S2 as well since S2 ⊂ S3. Stronger monotonicity conditions imply positive
definiteness on higher-order spheres, and we refer the reader to Gneiting (2013)
for details.

The following example shows that covariance functions that are positive
definite on S3 can be constructed from the Bernoulli polynomials of even integer
order B2n(x):

Example 2:

ψ(θ) = σ2

[
(1 + α) +

(2π)2nB2n(θ/(2π))

(−1)n−1(2n)!

]
= σ2


(1 + α) +

∑

k 6=0

exp (ikθ)

|k|2n




(6)
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This covariance function has parameters σ2, α > 0, and n ∈ N. Here, σ2 controls
the variance, and α provides an overall vertical shift to the covariance functions.
The covariance function remains valid when n takes on arbitrary values greater
than 1/2, but the closed form in (6) requires n ∈ N. The Fourier coefficients
are monotonic and have 2m moments if and only if n ≥ m + 1, and thus the
covariance function is positive definite on S3 and corresponds to processes with
m mean square derivatives if and only if n ≥ m+ 1. We refer to the covariance
function in (6) as the Bernoulli covariance function. It is easily computable
since the Bernoulli polynomials are available in closed form.

We propose a final covariance function that we consider to be of practical
use for making comparisons with the chordal Matérn.

Example 3:

ψ(θ) =
σ2

2π

∑

k∈Z

exp(ikθ)

(α2 + k2)ν+1/2
, (7)

The three parameters are σ2, α, ν > 0, with the same interpretations as in the
Matérn and Legendre-Matérn covariance functions. In this paper, we refer to
the covariance function in (7) as the circular Matérn covariance function. The
circular Matérn is positive definite on S1 since fk = (α2 + k2)−ν−1/2 is positive
and summable, and further, it is strictly positive definite on S2 and S3 since fk
is strictly monotone decreasing for k ≥ 0. Using Theorem 1, processes with the
circular Matérn covariance function are m times mean square differentiable if
and only if ν > m.

When the smoothness parameter ν is a half-integer, the circular Matérn is
given by the formula

ψn(θ) =
a

2π

∞∑

k=−∞

exp(ikθ)

(α2 + k2)
n ,

where for simplicity, we set σ2 = a = 2α sinh(απ), which does not affect the
generality of the following result that establishes a closed form for ψn(θ) in
terms of polynomials and hyperbolic functions.

Theorem 2.

ψn(θ) =

n−1∑

k=0

ank(α(θ − π))khyp(k)(α(θ − π)),

where hyp(k)(t) is cosh(t) when k is even and sinh(t) when k is odd.
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For example,

ψ1(θ) =a10 cosh(α(θ − π)),

ψ2(θ) =a20 cosh(α(θ − π)) + a21(α(θ − π)) sinh(α(θ − π)),

ψ3(θ) =a30 cosh(α(θ − π)) + a31(α(θ − π)) sinh(α(θ − π))+

a32(α(θ − π))2 cosh(α(θ − π)),

ψ4(θ) = . . .

The proof of this theorem is lengthy, but interesting, so we include it in full
in Appendix S1, which also contains explicit formulas for the coefficients ank.
Given the form of the Fourier coefficients of the circular Matérn, ψn(θ)/ψn(0)
is the characteristic function for an integer-valued version of the t-distribution
with integer degrees of freedom. The existence of a closed form in terms of
polynomials and hyperbolic functions is analogous to the Matérn as well, since
it has a closed form expression in terms of polynomials and exponential functions
when ν is a half-integer. The details of the derivation of the closed form are
provided in Appendix S1, as well as explicit formulas for the coefficients ank.
We also provide computationally efficient and theoretically grounded methods
for approximating the circular Matérn for arbitrary ν in Appendix S2.

4. Application to satellite and climate model data

Both Gneiting (2013) and Huang et al. (2011) list several covariance func-
tions that are known to be valid on S2. In Table 1, we give the functional
form and parameters for those covariance functions and for the new covariance
functions discussed herein. We investigate the performance of these covariance
functions on two datasets, where performance is judged based on two criteria:
(1) the value of the Gaussian loglikelihood function at its maximum when fit
to each dataset, and (2) the width and coverage of 90% prediction intervals for
the process at held-out spatial locations. The first criterion assesses whether
the covariance model gives an accurate representation of the process, and the
second evaluates the accuracy of predictions and prediction uncertainty.

The first dataset we consider contains values of total column ozone derived
from observations made by the Ozone Monitoring Instrument on board NASA’s
Aura Satellite. Aura follows a nearly sun-synchronous orbit with a period of
roughly 100 minutes. We consider observations from a single orbit that encom-
pass a wide range of latitudes over a longitude band of roughly 23 degrees near
the equator. The data are plotted against latitude in Figure 2. Since all of the
data are collected within a 50-minute window, we ignore the time dimension
in the data and proceed as if they were collected simultaneously. We fit the
covariance models to 1000 of these ozone values and for prediction purposes
hold out an additional 1000 values at distinct locations. All of the data are
publicly available on the web; we downloaded them using the Simple Subset
Wizard (http://disc.sci.gsfc.nasa.gov/SSW/) with keyword OMDOAO3
for the date of March 19, 2012.
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Name Expression Parameter Values

Chordal Matérn
(
α2 sin

(
θ
2

))ν
Kν

(
α2 sin

(
θ
2

))
α, ν > 0

Circular Matérn
∑∞

k=−∞(α2 + k2)−ν−1/2 exp(ikθ) α, ν > 0

Legendre-Matérn (N)
∑N

k=0(α
2 + k2)−ν−1/2Pk(cos θ) α, ν > 0

Bernoulli (1 + α) +
∑
k 6=0 |k|

−2n exp(ikθ) α > 0, n ∈ N

Powered Exponential exp (−(αθ)ν) α > 0; ν ∈ (0, 1]

Generalized Cauchy (1 + (αθ)
ν
)
−τ/ν

α, τ > 0; ν ∈ (0, 1]

Multiquadric (1− τ)2α/(1 + τ2 − 2τ cos(θ))α α > 0; τ ∈ (0, 1)

Sine Power 1−
(
sin θ

2

)ν
ν ∈ (0, 2)

Spherical
(
1 + αθ

2

)
(1− αθ)

2
+ α > 0

Askey (1− αθ)
τ
+ α > 0; τ ≥ 2

C2-Wendland (1 + ταθ) (1− αθ)τ+ α ≥ 1
π ; τ ≥ 4

C4 Wendland
(
1 + ταθ + τ2−1

3 (αθ)2
)
(1− αθ)

τ
+ α ≥ 1

π ; τ ≥ 6

Table 1: List of covariance functions. Those below the horizontal line appear in Huang et al.
(2011) or Gneiting (2013)

The second dataset contains 10 meter height surface temperature outputs
from a single run of the Community Climate System Model Version 4 (CCSM4).
We consider a spatial field consisting of a single year’s average temperature,
corresponding to year 50 of this particular run of the model. The values are
plotted against latitude in Figure 3. The temperature values from the climate
model output tend to be smoother as a function of spatial location than are
the total column ozone values. Again, we consider 1000 temperature values and
hold out an additional 1000 values. The locations of the observed and held-out
values are regularly-spaced over the oceans.

For each covariance function ϕ(θ) listed in Table 1, we fit the covariance
function γ1θ=0 + σ2ϕ(θ), so in addition to the parameters listed in Table 1, we
include the possibility of a nugget term and a multiplicative term. The models
are fit using residual maximum likelihood (REML), assuming an unknown mean
function that is cubic in latitude. In Table 2, we report the maximum residual
loglikelihood for each dataset and for each covariance family, relative to that of
the best-fitting covariance function.

Conditional on the fitted covariance functions for each covariance family and
each dataset, we compute best linear unbiased predictions (BLUPs) Ẑ(x0) of the
process Z(x0) at each held-out location, x0. For each prediction, we compute

the mean square prediction error E(Ẑ(x0)− Z(x0))
2 and form 90% prediction

intervals based on a Gaussian assumption. The details of the computation of
the BLUPs and their mean square errors can be found in Stein (1999, Sec. 1.5).
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Figure 2: Total column ozone observations as a function of latitude. The smooth curve is a
generalized least squares estimate of a cubic mean function, assuming the covariance function
is the REML estimate of the circular Matérn.
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Figure 3: Climate model temperature values as a function of latitude. The smooth curve is a
generalized least squares estimate of a cubic mean function, assuming the covariance function
is the REML estimate of the circular Matérn.
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Ozone Data Climate Model Data

Cov. Family ∆loglik width coverage ∆loglik width coverage

Chordal Matérn −0.79 42.24 90.90 −0.05 0.90 89.30

Circular Matérn −0.79 42.24 90.90 0.00 0.90 89.30

Legendre-Matérn(100) −14.33 43.42 91.30 −0.55 0.90 89.30

Legendre-Matérn(1000) 0.00 42.20 91.10 −0.54 0.90 89.30

Bernoulli, n=1 −6.81 41.99 90.70 −117.44 1.47 94.40

Bernoulli, n=2 −103.96 44.23 90.60 −29.86 0.96 90.00

Powered Exponential −0.81 42.24 90.90 −119.27 1.48 94.40

Generalized Cauchy −0.84 42.24 91.00 −119.83 1.48 94.40

Multiquadric −9.72 43.14 91.10 −4.46 0.95 90.10

Sine Power −2.03 42.22 91.20 −17.53 0.98 89.80

Spherical −2.93 41.82 90.80 −121.84 1.48 94.70

Askey −2.37 41.99 90.80 −113.66 1.47 94.40

C2 Wendland −16.05 43.12 91.20 −0.10 0.91 89.30

C4 Wendland −21.83 43.37 91.20 −8.41 0.99 90.00

Table 2: Residual maximum loglikelihoods and average widths and empirical coverage prob-
abilities of 90% prediction intervals over all held-out sites x0. The loglikelihood is reported
relative to the best-fitting model for each dataset.

In Table 2, we report the average width of the prediction intervals and their
empirical coverage for each covariance function.

We see that for the ozone data, which is rougher, many of the covariance
families perform nearly equally well in terms of residual maximum likelihood
and prediction. The circular and chordal Matérn both return estimates of
ν̂ = 0.419 rounded to three decimals. Thus it is not surprising that the co-
variance families that perform well can all be made linear at the origin. On
the contrary, those that perform poorly on the ozone data–the Bernoulli with
n = 2, the Multiquadric, the C2-Wendland, and the C4-Wendland–are always
twice differentiable at the origin. For those three covariance functions, either the
prediction interval width or the empirical coverage probabilities are too large.
The Legendre-Matérn (1000) performs well, but the Legendre-Matérn (100) is
suboptimal in terms of loglikelihood and prediction, suggesting that truncation
after 100 terms is not sufficient in this case.

Except for the chordal Matérn, the circular Matérn, and the Legendre-
Matérn, all of the covariance families that performed well on the ozone data
perform poorly on the climate model data, with some performing extremely
poorly. The chordal Matérn, the circular Matérn, and the Legendre-Matérn
return estimates ν̂ = 1.457, ν̂ = 1.459, and ν̂ = 1.4603, respectively, which sug-
gests that the climate model data can be modeled by a process that is once but
not twice mean square differentiable. The Legendre-Matérn (100) and (1000)
have nearly equal performance, which suggests that truncation after 100 terms
is nearly sufficient in this case, which is not surprising because the coefficients
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for the fitted models decay more quickly with k than they did for the ozone data
model. For the climate model data, the covariance families that can be made
differentiable at the origin perform well, while those that are always linear at
the origin perform particularly poorly in terms of loglikelihood and prediction.
These covariance functions overestimate the mean square prediction error, lead-
ing to overly conservative prediction intervals. It is also interesting to note that
the C2-Wendland outperforms the C4-Wendland in terms of loglikelihood; the
C4-Wendland is too smooth since it possesses four continuous derivatives at the
origin, while the C2-Wendland has just two.

The chordal, circular, and Legendre-Matérn fit both datasets reasonably well
in terms of Gaussian residual loglikelihoods, whereas all of the other covariance
functions fit poorly to at least one of the datasets. While the Bernoulli has
the ability to vary the smoothness, it lacks a range parameter, which limits
its flexibility. For these datasets, we are not able to detect any large improve-
ment of the circular Matérn or the Legendre-Matérn over the chordal Matérn;
the maximum residual likelihoods are slightly different, but we do not inter-
pret this difference to be practically significant. We consider the comparisons
presented here to constitute evidence for the wide-ranging applicability of the
chordal Matérn, since the two datasets are quite different in terms of smooth-
ness. Moreover, the chordal Matérn is faster to compute than both the circular
Matérn and the Legendre-Matérn; for the satellite data, filling the 2000× 2000
covariance matrix for all observations and missing values required 0.85 seconds
with the chordal Matérn versus 5.13 seconds and 3.29 seconds with the circular
Matérn and Legendre-Matérn (100). All computations were completed on an
Intel Core-i7 4770 processor at 3.40 GHz with 32 GB of RAM, running Matlab
version R2013a.

5. Discussion

We have studied the mean square differentiability properties of stochastic
processes on spheres based on their covariance functions. We prove a theorem
characterizing covariance functions for m times mean square differentiable pro-
cesses on d dimensional spheres. Since it is common to construct processes on
spheres by considering restrictions of processes on Euclidean spaces of higher
dimension, we prove a corollary stating that the restricted processes retains the
differentiability properties of the original process. This result has the important
implication that the choral Matérn covariance function retains the full flexibility,
in terms of smoothness, of the Matérn covariance function.

The use of chordal distance as the argument in covariance functions has
been questioned because great circle distance is the natural distance metric on
a sphere. To provide insight into whether the chordal Matérn is an appropri-
ate covariance model for data on spheres, we constructed alternative covariance
functions that possess analogous flexibility of smoothness but also respect spher-
ical geometry. The new covariance functions and a number of existing covari-
ance functions were fit to smooth and non-smooth datasets, and their modeling
and predictive performance were compared. The chordal Matérn, the circular
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Matérn, and the Legendre-Matérn families all contain members that fit well in
terms of loglikelihood and provide good predictive performance to both of the
datasets. All of the other existing covariance functions achieve suboptimal per-
formance when applied to at least one of the datasets. We conclude that we do
not see any evidence that the use of chordal distance introduces any distortions.
On the other hand, we do see evidence that considering only classes of covariance
functions that are valid on Euclidean spaces and remain valid on spheres with
great circle distance does limit our ability to adequately model a wide range of
smooth and non-smooth datasets. While we have provided detailed methods for
computing the circular Matérn in Appendix S2, the chordal Matérn is still faster
to compute, so we recommend the use of the chordal Matérn in applications.
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Appendix A. Proof of Theorem 1

Theorem 3. If an isotropic process Z on Sd has covariance function

ψ(θ) =
1

2π

∑

k∈Z

fk exp(ikθ),

then the following statements are equivalent:

1. Z is m times mean square differentiable.

2.
∑∞

k=−∞ k2mfk <∞.

3. ψ2m(0) exists and is finite.

Proof. 1 ⇔ 2: Because Z is isotropic, to prove that 1 is equivalent to 2 it suffices

to show that Z
(m)
X

(φ(x)), as defined above, exists for an x in a great circle X

if and only if
∑∞
k=−∞ k2mfk < ∞. Define Y to be a process on the real line

such that Y (φ(x) + 2πk) = ZX(φ(x)) for k ∈ Z. Stein (1999) defines a process
Y on the real line to be mean square differentiable at φ if limε→0(Y (φ + ε) −
Y (φ))/ε exists in the Hilbert space of linear combinations of Y , with higher
order derivatives defined similarly as above. Therefore, ZX is m times mean
square differentiable at x if and only if Y is at φ(x). Embedding a restriction of
Z in a process on the real line allows us to use classical results on mean square
differentiable processes on the real line. Due to Bochner’s theorem, isotropic
covariance functions on the real line can be expressed as

Cov(Y (φ1), Y (φ2)) =

∫

R

eiω(φ1−φ2)dF (ω),
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where F (ω) is called the spectral measure. Stein (1999) shows that if a process
on the real line has spectral measure F , then it is m times mean square differ-
entiable if and only if

∫
R
ω2mdF (ω) < ∞. The process Y that we constructed

has covariance function

Cov(Y (φ1), Y (φ2)) =
∞∑

k=−∞

eik(φ1−φ2)fk,

Thus, its spectral measure is F (ω) =
∑
k≤ω fk, and

∫

R

ω2mdF (ω) =

∞∑

k=−∞

k2mfk.

Hence Y , and therefore Z, is m times mean square differentiable if and only if∑∞
k=−∞ k2mfk <∞.
2 ⇔ 3: The finiteness of the 2m’th moment of a positive finite measure is

equivalent to the existence and finiteness of the 2m’th derivative of its char-
acteristic function (Chung, 2001, Theorem 6.4.1), so

∑∞
k=−∞ k2mfk < ∞ is

equivalent to ψ2m(0) existing and finite.
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S1. Proof for closed form of the circular Matérn

When the smoothness parameter ν is a half-integer, the circular Matérn is
given by the formula

ψn(θ) =
a

2π

∞∑

k=−∞

exp(ikθ)

(α2 + k2)
n ,

where a = 2α sinh(απ).

Theorem 2.

ψn(θ) =

n−1∑

k=0

ank(α(θ − π))khyp(k)(α(θ − π)),

where hyp(k)(t) is cosh(t) when k is even and sinh(t) when k is odd. The

coefficient an,n−1 is given by

an,n−1 =
[
(−2α2)n−1(n− 1)!

]−1
.

For r = 0, . . . , n− 2 and k = 0, . . . , n− 1, define

hrk =

2r+1∑

j=0

(
2r + 1

j

)
(k)j (απ)

k−jhyp(k−j+1)(απ),

where (k)j is the falling factorial and equals 1 if j = 0 and equals (k)(k −
1) · · · (k− j+1) if j > 0. We define the matrix Hn−1 to be the (n− 1)× (n− 1)
matrix with (r + 1, k + 1)th entry hrk, and the (n− 1)× 1 vector hn−1 to have

(r + 1)th entry hr,n−1. Then the vector of coefficients an = (an0, . . . , an,n−1)
′
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is given by the formula

an =

[
(an0, . . . , an,n−2)

′

an,n−1

]
=

[
−an,n−1H

−1
n−1hn−1

an,n−1

]
.

Proof: The function ψn(θ) satisfies the following inhomogeneous differential
equation with constant coefficients:

n−1∑

m=0

cmψ
(2m)
n (θ) = ψ1(θ),

with

cm =

(
n− 1

m

)
(−1)mα2(n−1−m).

We know that ψ1(θ) = cosh(α(θ−π)) (Gradshteyn and Ryzhik, 2007, Equation
1.445.2). Making the substitution t = θ−π, the differential equation has general
solution

ψn(t+ π) =

2(n−1)∑

k=0

(bk1(αt)
keαt + bk2(αt)

ke−αt),

which can be solved by the method of undetermined coefficients. Symmetry
conditions on ψn(t + π) around t = 0 require that bk1 = bk2 if k is even, and
bk1 = −bk2 when k is odd, so the general solution can be rewritten as

ψn(t+ π) =

2(n−1)∑

k=0

bk(αt)
khyp(k)(αt).

The (2m)th derivative of ψn is thus given by

ψ(2m)
n (t+ π) =

2(n−1)∑

k=0

bkα
2m

2m∑

j=0

(
2m

j

)
(k)j(αt)

k−jhyp(k−j)(αt),

and the differential equation is

n−1∑

m=0

cm

2(n−1)∑

k=0

bkα
2m

2m∑

j=0

(
2m

j

)
(k)j(αt)

k−jhyp(k−j)(αt) = cosh(αt). (1)

To evaluate the left hand side of (1), we exchange the order of addition to arrive
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at

2(n−1)∑

k=0

2(n−1)∑

j=0

n−1∑

m=⌈j/2⌉

cmbkα
2m

(
2m

j

)
(k)j(αt)

k−jhyp(k−j)(αt) = cosh(αt), (2)

where ⌈·⌉ is the ceiling function. To study (2), we proceed by fixing k and
summing over j and m. We can ignore the terms for which j > k because in
those cases (k)j = 0. For k = 0, . . . , 2(n− 1), we define

pk(t) :=
k∑

j=0

n−1∑

m=⌈j/2⌉

cmα
2m

(
2m

j

)
(k)j(αt)

k−jhyp(k−j)(αt)

=

k∑

j=0

(k)j(αt)
k−jhyp(k−j)(αt)

n−1∑

m=⌈j/2⌉

α2mα2(n−1−m)(−1)m
(
n− 1

m

)(
2m

j

)

=

k∑

j=0

1

j!
(k)j(αt)

k−jhyp(k−j)(αt)α2(n−1)
n−1∑

m=⌈j/2⌉

(−1)m
(
n− 1

m

)
(2m) · · · (2m− j + 1)

=

k∑

j=0

1

j!
(k)j(αt)

k−jhyp(k−j)(αt)α2(n−1)
n−1∑

m=⌈j/2⌉

(−1)m
(
n− 1

m

)
Pj(m),

where Pj(m) = (2m)(2m − 1) · · · (2m − j + 1) is a jth order polynomial in m
that equals zero when m = 0, . . . , ⌈j/2⌉− 1, so we can allow the sum over m to
run from 0 to n− 1 in

pk(t) =

k∑

j=0

1

j!
(k)j(αt)

k−jhyp(k−j)(αt)α2(n−1)
n−1∑

m=0

(−1)m
(
n− 1

m

)
Pj(m).

Since Pj is a jth order polynomial, the sum over m is zero when j < n − 1
(Gradshteyn and Ryzhik, 2007, Equation 0.154.3), and hence pk(t) is zero when
k < n− 1. When j = n− 1,

n−1∑

m=0

(−1)m
(
n− 1

m

)
Pj(m) =

n−1∑

m=0

(−1)m
(
n− 1

m

)(
(2m)n−1 +Qn−2(m)

)

=
n−1∑

m=0

(−1)m
(
n− 1

m

)
(2m)n−1

= 2n−1(−1)n−1(n− 1)!

6= 0, (3)

where the second equality is due to the fact that Qn−2 is a polynomial of de-
gree n − 2, and the third equality follows from Gradshteyn and Ryzhik (2007,
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Equation 0.154.4). If we rewrite pk(t) for k ≥ n− 1 as

pk(t) =

k∑

j=n−1

1

j!
(k)j(αt)

k−jhyp(k−j)(αt)α2(n−1)
n−1∑

m=0

(−1)m
(
n− 1

m

)
Pj(m),

(4)

we can now see that the set of functions pk(t) for k = n − 1, . . . 2(n − 1) are
linearly independent, since pk(t) can be written as

pk(t) =

k−(n−1)∑

l=0

wkl(αt)
lhyp(l)(αt),

where wkl are constants for which wk,k−(n−1) 6= 0 by (3). The differential
equation in (1) is now reduced to

2(n−1)∑

k=n−1

bkpk(t) = cosh(αt).

with the set of functions pk(t) linearly independent. When k = n− 1, we have

pn−1(t) = bn−1 cosh(αt)α
2(n−1)

n−1∑

m=0

(−1)m
(
n− 1

m

)(
(2m)n−1 +Qn−2(m)

)

= bn−1 cosh(αt)α
2(n−1)2n−1(−1)n−1(n− 1)!,

which is proportional to cosh(αt). Since the differential equation is set equal to
cosh(αt) and the pk’s are linearly independent for k ≥ n−1, we have determined
that

1

bn−1
=

(
−2α2

)n−1
(n− 1)!.

We now have the equation

2(n−1)∑

k=n

bkpk(t) = 0. (5)

Since the pk’s are linearly independent, (5) implies that bk = 0 for all k > n−1.
However, the other coefficients b0, . . . , bn−2 must be determined by enforcing
the initial conditions implied by ψn. We know that the odd derivatives of ψn

up to order 2(n− 1)− 1 must be zero when evaluated at 0 and 2π. This gives
us n− 1 initial conditions. The (2r+ 1)th derivative of ψn evaluated at θ = 2π
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(or t = π) is

ψ(2r+1)
n (2π) =

n−1∑

k=0

bkα
2r+1

2r+1∑

j=0

(
2r + 1

j

)
(απ)k−j(k)jhyp

(k−j+1)(απ).

Setting this equation equal to zero gives us the n − 1 equations corresponding
to r = 0, . . . , n− 2:

n−2∑

k=0



2r+1∑

j=0

(
2r + 1

j

)
(απ)k−j(k)jhyp

(k−j+1)(απ)


 bk

= −bn−1

2r+1∑

j=0

(
2r + 1

j

)
(απ)n−1−j(n− 1)jhyp

(n−j)(απ).

With hrk, Hn−1, and hn−1 defined as above, the solution of this system of
equations is

(b0, . . . , bn−2)
′ = −bn−1H

−1
n−1hn−1.

S2 Approximation for arbitrary smoothness

In most cases, the smoothness of the process is not known a priori, so it is
desirable to have methods for estimating the smoothness from the data. This
generally requires computing exactly or approximating the covariance function
with arbitrary values of ν. As far as we know, the circular Matérn does not have
a closed form expression in terms of elementary or special functions of θ when
ν is not a half-integer. As a result, we are forced to resort to an approximation,
but in this case we show that there is a computationally efficient approximation
with good theoretical properties.

According to the Poisson summation formula (Zwillinger, 2003), the circular
Matérn can always be written as

ψ(θ) =
1

2π

∞∑

k=−∞

eikθ

(α2 + k2)ν+1/2
=

∞∑

n=−∞

M(θ + 2πn), (1)

whereM is the continuous Fourier transform of f(ω) = (α2+ω2)−ν−1/2, so that
M(θ) is proportional to Kν(αθ)(αθ)

ν with proportionality constant depending
on α and ν. Consider a truncation of the right hand sum in (1), obtaining

CN (θ) =

N∑

n=−N

M(θ + 2πn).

This approximation should be numerically sufficient in most cases when α is not
too small, and ν is not too large, i.e. when neither the range nor the smoothness
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Figure 1: (a) ψ(θ) with ν = 1/2, α = 1 (solid line), along with ψ̃(θ) (dashed line) and C0(θ)

(dotted line), (b) R(θ) = ψ(θ) − ψ̃(θ) (dashed line) and R0(θ) = ψ(θ) − C0(θ) (dotted line),

(c) R(1)(θ) = ψ(1)(θ)− ψ̃(1)(θ) (dashed line) and R
(1)
0 (θ) = ψ(1)(θ)− C

(1)
0 (θ) (dotted line).

are too large. For example, when ν = 1/2, M decreases exponentially with rate
α.

However, the truncated approximation does not carry with it any theoretical
guarantees of positive definiteness or “closeness” to ψ. If we add an even poly-
nomial to CN (θ), such theoretical results are possible. To this end, we propose
the approximation

ψ̃(θ) = CN (θ) + p2d(θ),

where p2d(θ) =
∑d

k=0 a2kθ
2k is chosen so that R(θ) := ψ(θ) − ψ̃(θ) is 2d times

continuously differentiable on the unit circle T. Controlling the derivatives of
the difference R(θ) = ψ(θ)−ψ̃(θ) between a covariance function and an approxi-
mation to it is central to proving results relating to both the positive definiteness
of the approximation and the extent to which ψ̃ is a good approximation to ψ,
where we define the approximation to be good if the resulting Gaussian measures
are equivalent.

Defining RN (θ) := ψ(θ) − CN (θ), we rewrite R(θ) = RN (θ) − p2d(θ). It
can be shown (Lemma 2 in Appendix S3), that RN (θ) is infinitely continuously
differentiable on [−π, π]. However, the derivatives at −π and π are not neces-
sarily equal to each other, so RN is not infinitely continuously differentiable on
the unit circle. Specifically, RN is an even function, so its even derivatives are
continous on the unit circle, but its odd derivatives may be discontinuous at one
point on the unit circle. However, if we choose p2d so that its odd derivatives
at −π and π up to order 2d − 1 match those of RN , then R will be 2d times
continuously differentiable on the unit circle, since p2d is also an even and in-
finitely continuously differentiable function on [−π, π]. In Figure 1, we show an
example with d = 1 and N = 0.

In general, in order for the odd derivatives of p2d at −π and π to match

those of RN , we set p2d(θ) =
∑d

k=0 a2kθ
2k, with a2d = R

(2d−1)
N (π)/((2d)!π), and
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proceeding recursively, set

a2(d−j) =
1

π(2(d− j))!

[
R

(2(d−j)−1)
N (π)−

j−1∑

k=0

(2(d− k))!

(2(j − k) + 1)!
a2(d−k)π

2(j−k)+1

]

(2)

for j = 1, . . . , d − 1. The value of a0 does not affect the differentiability. The
computation of these odd derivatives appears at first to be a daunting task since
RN is an infinite sum. However, when θ = π, this sum can be rewritten as

RN (π) =M(−π(2N + 1)) +

∞∑

n=1

M(−π(2N + 1 + 2n)) +M(π(2N + 1 + 2n)).

Since M is even, when RN is differentiated an odd number of times, each term
in the sum will be zero, and we can compute any odd derivative of RN evaluated
at π by simply computing the odd derivative of M evaluated at −π(2N + 1).

The following theorem establishes positive definiteness of the approximate
covariance function.

Theorem 3. If d > ν, there exists an even polynomial p2d(θ) =
∑d

k=0 a2kθ
2k

and a finite integer N for which ψ̃(θ) = CN (θ) + p2d(θ) is positive definite on

S
1, and if d > ν + 1/2, there exists even polynomial and finite integer N for

which ψ̃ is positive definite on S
2 and S

3.

Proof. To prove that ψ̃(θ) is positive definite on S
1, it is sufficient to show that

f̃k =
∫
T
ψ̃(θ)e−ikθdθ > 0 for all k ∈ Z, and

∑
k∈Z

f̃k < ∞. Using R(θ) =

ψ(θ)− ψ̃(θ), f̃k can be expressed as

f̃k =

∫

T

(ψ(θ)−R(θ))e−ikθdθ = fk − εk,

where fk and εk are the Fourier coefficients for ψ and R, respectively. Defining

a2k as in (2) for k = 1, . . . , d, chooseN large enough so that supθ∈[−π,π]R
(j)
N (θ) <

(1/2)(α2 + 1)−ν−1/2 for both j = 2d and j = 2d− 1, and so that

∫

T

|RN (θ)|2dθ +

∫

T

|p2d(θ)|
2dθ < f2

0 ,

which are all possible due to Lemma 2 in Appendix S3. Then R(θ) = RN (θ)−
p2d(θ) is 2d times continuously differentiable on T, and R(2d) is differentiable
everywhere on T except at π. Furthermore, R(2d)(θ) is bounded above by (α2+

1)−ν−1/2 because p
(2d)
2d (θ) = R

(2d−1)
N (π), and N was chosen so that R

(2d−1)
N (θ)

and R
(2d)
N (θ) were both bounded above by (1/2)(α2 + 1)−ν−1/2.

Using Lemma 9.5 in Körner (1989), the differentiability properties ofR imply
that |εk| < A|k|−2d−1 for k 6= 0, where A = (α2+1)−ν−1/2. One can check that
fk = (α2 + k2)−ν−1/2 ≥ |k|−2ν−1(α2 + 1)−ν−1/2 for k 6= 0. Therefore, if d > ν,
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then |εk| < fk for every k 6= 0, and thus f̃k > 0 for every k 6= 0.
The sum

∑

k∈Z

|εk|
2 =

∫

T

|R(θ)|2 <

∫

T

|RN (θ)|2dθ +

∫

T

|p2d(θ)|
2dθ < f2

0 ,

which implies that |ε0| < f0, so that |εk| < fk for every k, and thus f̃k > 0

for every k. Finally, |εk| < fk for every k, and
∑
fk < ∞, imply that

∑
f̃k =∑

fk − εk <∞. Therefore, ψ̃ is positive definite on the circle.

To prove that ψ̃ is positive definite on S
2 and S

3, it is sufficient to show that
f̃k − f̃k+1 > 0 for every k ≥ 0. By the generalized binomial theorem, when
k > max(1, α2),

fk = k−2ν−1 + c1k
−2ν−2 + o(k−2ν−2),

fk+1 = (k + 1)−2ν−1 + c2(k + 1)−2ν−2 + o(k−2ν−2),

= k−2ν−1 + c3k
−2ν−2 + o(k−2ν−2),

with fk strictly monotonically decreasing implying that c0 = c1 − c3 > 0. So
we have fk − fk+1 = c0k

−2ν−2 + dk, where dk = o(k−2ν−2). Choose δ > 0 such
that 2δ < c0. Then

fk − fk+1 > (c0 − δ)k−2ν−2 + dk,

and there exists k0 < ∞ such that |dk| < δk−2ν−2 for all k > k0. Therefore
fk − fk+1 > (c0 − 2δ)k−2ν−2 for all k > k0, with c0 − 2δ > 0.

Choose N large enough that supθ∈[−π,π]R
(j)
N (θ) < (1/4)(c0 − 2δ) for j = 2d

and j = 2d− 1 and so that

∫

T

|RN (θ)|2dθ +

∫

T

|p2d(θ)|
2dθ <

1

4
(fk − fk+1)

2

for every k ≤ k0. Then we can bound |εk| < (1/2)(c0 − 2δ)|k|−2d−1 for k 6= 0
as before, and thus |εk − εk+1| < (c0 − 2δ)k−2d−1 for all k > k0. Therefore, if
d > ν + 1/2, |εk − εk+1| < fk − fk+1 for every k > k0.

Since
∑

j∈Z
|εj|

2 < (1/4)(fk − fk+1)
2 for every k ≤ k0, we have |εj| <

(1/2)(fk − fk+1) for every k ≤ k0 and for every j. Therefore, |εk − εk+1| <

fk − fk+1 for every k ≤ k0. Thus f̃k − f̃k+1 > 0 for every k.

The following theorem asserts that it is possible to construct the approx-
imation so that not only is it positive definite, but it well approximates the
true covariance function, in that the two Gaussian measures are equivalent. We
denote the Gaussian measure on S

1 with mean 0 and covariance function ψ by
G(0, ψ).
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Theorem 4. If d > ν+1/4, there exists an even polynomial p2d(θ) =
∑d

k=0 a2kθ
2k

and a finite integer N for which the Gaussian measures G(0, ψ) and G(0, ψ̃) on
S
1 are equivalent.

Proof. Using results in Stein (1999), the two Gaussian measures G(0, ψ) and

G(0, ψ̃) are equivalent if fk = O(f̃k), f̃k = O(fk), and the following sum is
finite:

∑

k∈Z

(
fk − f̃k

)2

f2
k

=
∑

k∈Z

ε2k
f2
k

.

In the proof of Theorem 3, we showed that it is possible to choose N large
enough so that |εk| < A|k|−2d−1 for all k 6= 0 and that fk > A|k|−2ν−1.
Therefore, if d > ν + 1/4, the Fourier coefficients are of the same order, and
ε2k/f

2
k < |k|−(1+δ) for some δ > 0 and for all k 6= 0, so the sum converges.

We conjecture that it is possible to choose d and N large enough so that
the Gaussian measures are equivalent on S

2 and S
3, but a proof of that would

involve describing conditions for equivalence of Gaussian measures on higher
order spheres, which is beyond the scope of this paper.

S3 Proofs of lemmas

Lemma 1. For α > 0, ν, µ ∈ R, j ∈ Z, the sequence of functions

Sn(θ) =
∑

0<|k|≤n

sgn(k)jKν(α|θ + 2πk|)(α|θ + 2πk|)µ

is uniformly convergent on [−π, π].

Proof. Using the Cauchy criterion, our aim is to show that for every ε > 0, there
existsN such that for every n,m ≥ N , θ ∈ [−π, π] implies that |Sn(θ)−Sm(θ)| ≤
ε. First we see that if n,m ≥ N , then

|Sn(θ)− Sm(θ)| ≤
∑

|k|>N

Kν(α|θ + 2πk|)(α|θ + 2πk|)µ

since Kν(x) > 0 for x > 0 (Digital Library of Mathematical Functions, 2012,
10.37). Using the fact thatKν(x) is decreasing in x (Digital Library of Mathematical Functions,
2012, 10.37, 10.27.3), and that for θ ∈ [−π, π], 2π|k|−π ≤ |θ+2πk| ≤ 2π|k|+π,
we obtain Kν(α|θ+2πk|) ≤ Kν(α(2π|k|−π)), and (α|θ+2πk|)µ ≤ (α(2π|k|+π)µ

for µ ≥ 0. We assume µ ≥ 0 because if µ < 0, the summand is eventually
bounded by Kν(α|θ + 2πk|)(α|θ + 2πk|)0. Therefore

|Sn(θ)− Sm(θ)| ≤ 2
∑

k>N

Kν(α(2πk − π))(α(2πk + π))µ,
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so if this sum converges, we can always find N such that |Sn(θ) − Sm(θ)| < ε.
The modified Bessel function of the second kind has the property that Kν(z) ∼
(π/2)1/2z−1/2e−z. This implies that there exists a positive constant A and
integer M such that for all k > M ,

Kν(α(2πk − π)) ≤ A

√
π

2
(α(2πk − π))−1/2e−α(2πk−π).

Thus

∑

k>M

Kν(α(2πk − π))(α(2πk + π))µ ≤

A

√
π

2
e2πα

∑

k>M

(2πk + π)1/2

(2πk − π)1/2
(α(2πk + π))µ−1/2e−α(2πk+π),

which clearly converges.

Lemma 2. For every N, j ∈ Z
+, R

(j)
N (θ) is continuous on [−π, π], and for

every j, R
(j)
N (θ) converges to zero uniformly on [−π, π] as N → ∞.

Proof. We first need to show that RN (θ) can be repeatedly differentiated term-

by-term so that we can write down expressions for R
(j)
N (θ). Formally, we define

RN,n(θ) = cα,ν
∑

N<|k|≤n

Kν(α|θ + 2πk|)(α|θ + 2πk|)ν .

Following Theorem 7.17 (Rudin, 1796), suppose the following conditions hold
for a sequence of functions fn:

(a) fn(θ) is differentiable on [−π, π] for each n,

(b) fn(θ0) converges for some θ0 ∈ [−π, π],

(c) f
(1)
n (θ) converges uniformly on [−π, π].

Then fn converges uniformly on [−π, π] to a function f , and f (1)(θ) = limn→∞ f
(1)
n (θ)

for θ ∈ [−π, π], i.e. the limit of the derivatives of a sequence of functions is equal
to the derivative of the limit.

We set fn(θ) = RN,n(θ) and check the conditions of the theorem. If k 6= 0,
|θ + 2πk| > 0 for all θ ∈ [−π, π]. Since the modified Bessel function of the
second kind and polynomials are both differentiable away from 0, it follows that
RN,n(θ) is also differentiable for each n, so (a) holds. According to Lemma 1,
RN,n is uniformly convergent on [−π, π] as n → ∞, so (b) holds as well. The
derivative of the modified Bessel function can be expressed as

K(1)
ν (x) = −

1

2
(Kν−1(x) +Kν+1(x)) (1)
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(Watson, 1966), so the derivative of RN,n(θ) is given by

R
(1)
N,n(θ) = cα,ν

∑

N<|k|≤n

sgn(k)α

2
(−Kν−1(α|θ + 2πk|)−Kν+1(α|θ + 2πk|)) (α|θ + 2πk|)ν

+ανKν(α|θ + 2πk|)(α|θ + 2πk|)ν−1,

which consists of three terms, each of which can be written in the form in Lemma

1. Therefore R
(1)
N,n(θ) converges uniformly, so (c) holds and thus RN (θ) can be

differentiated once term-by-term.
In general, using repeated applications of (1), the j’th derivative of RN,n

can be expressed as

R
(j)
N,n(θ) = cα,ν

∑

N<|k|≤n

j∑

l=0

sgn(k)jαj

(
j

l

)[
(−2)−j+l

j−l∑

m=0

(
j − l

m

)
Kν−j+l+2m(α|θ + 2πk|)

]
×

[
Γ(ν + 1)

Γ(ν + 1− l)
(α|θ + 2πk|)ν−l

]
. (2)

Since the number of terms is finite, we can exchange the order of summation
so that RN,n(θ) can be written as a finite number of sums of the form given
in Lemma 1. Proceeding inductively, we assume that RN can be differentiated
j times term-by-term, with derivative given by the limit as n → ∞ of the ex-

pression in (2). Then to complete the induction we must show that R
(j)
N can

be differentiated term-by-term, which amounts to establishing the conditions

of Theorem 7.17 with fn = R
(j)
N,n. Differentiability holds again due to differ-

entiability of polynomials and the modified Bessel function of the second kind.

Convergence at a point holds again because of the form of R
(j)
N,n(θ) and Lemma

1. Uniform convergence of the derivative also holds because the (j+1)’th deriva-
tive of RN,n can also be written as a finite number of sums of the form in Lemma

1. An additional consequence of Theorem 7.17 is that R
(j)
N,n converges uniformly

on [−π, π]. Therefore we have shown that RN (θ) can be differentiated term-by-
term an arbitrary number of times, and the convergence of the j’th derivative
(as n → ∞) is uniform on [−π, π]. Continuity of the derivatives follows from
the fact that each derivative is differentiable.

The uniform convergence of the derivatives allows us to easily show that

R
(j)
N (θ) converges to zero uniformly on [−π, π] asN → ∞. Suppose thatN > M .

Then we can write R
(j)
N (θ) = R

(j)
M (θ)−R

(j)
M,N (θ). We have just shown that R

(j)
M,N

converges uniformly to R
(j)
M as N → ∞, which means that for every ε > 0, we

can find N0 such that N > N0 implies |R
(j)
M,N −R

(j)
M | < ε, which in turn implies

that |R
(j)
N (θ)| < ε for every N > N0.
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