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Abstract

The mobility and environmental impacts of toxic trace elements are regu-
lated by their reactions with soils, which are complex heterogeneous mixtures
of minerals and organic matter. We describe an experiment that maps the
composition of elements on an individual soil sand grain using X-ray fluores-
cence microprobe analyses, after the grain is treated with arsenic solutions,
resulting in multivariate spatial lattice maps of elemental abundance. To
understand the behavior of arsenic in soils, it is important to disentangle
the complex multivariate relationships among the elements in the sample.
The abundance of most elements, including arsenic, correlates strongly with
that of iron, but conditional on the amount of iron, some elements miti-
gate or potentiate the accumulation of arsenic. This problem motivates our
work to define conditional correlation in spatial lattice models and give gen-
eral conditions under which two components are conditionally uncorrelated
given the rest. We describe how to enforce that two components are con-
ditionally uncorrelated given a third in parametric models, which provides
a basis for likelihood ratio tests for conditional correlation between arsenic
and chromium given iron. We show how to apply our results to big datasets
using the Whittle likelihood, and we demonstrate through simulation that
tapering improves Whittle likelihood parameter estimates governing cross
covariance.
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conditional dependence
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1. Introduction

The discharge of toxic trace elements such as arsenic, mercury, lead, and
chromium into the environment from natural and anthropogenic sources
may contaminate soils, food, and water. Toxic trace elements are regulated
in part by soils, which are complex, heterogeneous mixtures of minerals, or-
ganic matter, and living organisms (Brown and Sturchio, 2002; Hesterberg
et al., 2011). Analytical techniques based on synchrotron X-ray absorption
spectroscopy (XAS) have emerged as powerful tools for determining the
chemical forms (speciation) and spatial distribution of chemical elements in
soils and other geochemical systems (Hayes et al., 1987; Brown and Sturchio,
2002). New synchrotron X-ray facilities are being designed for faster data
collection and aim to achieve spatial resolutions of 1 to 10 nm (Fitts and
Thieme, 2012). Although scientists are using these and other highly sophis-
ticated techniques to collect data on soil trace elements, the multicomponent
complexity of the geochemical systems hinders translation of the data into
a mechanistic understanding of chemical processes that impact the environ-
ment. To date, advanced spatial statistical models have not been developed
and applied to geochemical systems, limiting the utility and interpretation
of the complex data that are being collected. Consequently, new method-
ologies are needed to keep pace with the rapid advancements in synchrotron
X-ray technology that will produce unprecedented amounts of data. The
conditional correlation approach developed here is valuable for character-
izing spatially heterogeneous composition data from a wide range of soils
and other geochemical material and from a variety of microscale analytical
techniques.

The objective of this research is to develop statistical models and meth-
ods for making inference about multivariate relationships in large spatially
correlated lattice data, such as the sand grain data described in Section 2.
When the data consist of a number of multivariate observations that can
be assumed to be independent, the various multivariate dependence rela-
tionships can by studied by computing partial correlation coefficients and
by specifying and fitting more complex graphical models (Edwards, 2000).
However, the presence of spatial correlation violates the independence as-
sumption. Spectral analysis provides a natural framework for defining and
studying the properties of multivariate spatial models (Yaglom, 1987; Gneit-
ing et al., 2010). We define the notion of conditional correlation in spatial
lattice models and prove that components j and k are conditionally un-
correlated given the rest of the components if and only if the inverses
of the spectral density matrices contain zeroes in the jk’th entries at al-

2



most every frequency. This is an extension to multiple dimensions of results
by Dahlhaus (2000) on conditional correlation in multivariate time series.
Dahlhaus (2000) derived asymptotic distributions of statistics based on the
inverses of the empirical cross spectral density matrices. In the spatial case,
it is not clear how to derive asymptotic distributions for test statistics due
to the nontrivial edge effects associated with periodogram estimates of the
spectral density when the dimension of the domain is greater than 1 (Guyon,
1982; Dahlhaus and Künsch, 1987). For this reason, we develop a paramet-
ric framework for multivariate spatial data with three components and show
how to constrain the model to force two of the components to be condition-
ally uncorrelated given the third. This framework allows for the implemen-
tation of a likelihood ratio test for conditional correlation, and it provides
a way to model misalignment among the components of the multivariate
spatial data.

We demonstrate in a simulation study that the Whittle likelihood (Whit-
tle, 1954) may be used to estimate parameters when the edge effects are con-
trolled with tapering. The Whittle likelihood may be computed efficiently
for large datasets and does not suffer from the memory bottleneck associated
with storing large covariance matrices. We apply our methods to the multi-
element spatial data to be described in more detail in Section 2. This dataset
contains 4410 observations, so exact maximum likelihood procedures may be
applied directly to obtain estimates, which we compare to those found with
the Whittle likelihood. We find that arsenic and chromium are significantly
conditionally correlated given iron. Further, the correlation is negative,
meaning that conditional on the amount of iron present, increased amounts
of chromium in this sample tend to mitigate the accumulation of arsenic.
This relationship would not be apparent using more traditional methods of
analysis–such as elemental correlation and pairwise scatter plots–commonly
used by geochemists for similar datasets, indicating that the approach em-
ployed here may help uncover new insights into geochemical mechanisms of
trace-element binding in soils.

The rest of the paper is organized as follows: Section 2 provides a detailed
description of the data collection procedures. In Section 3, we review the
spectral representation of stationary multivariate spatial processes, which
lends itself to a succinct definition of conditional correlation in terms of the
cross spectral density matrices. We also provide parametric forms for spec-
tral densities and coherence functions and show how to force components
to be conditionally uncorrelated given the rest. The multivariate spatial
Gaussian likelihood is presented, along with the Whittle likelihood approx-
imation. In Section 4, we describe the results of a simulation to study the
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behavior of Whittle likelihood estimates of parameters governing the cross
covariance functions, and we investigate the role of tapering. Section 5
presents the results of our statistical analyses of the μ-XRF data, and we
conclude with a discussion of our findings in Section 6

2. Description of X-ray Fluorescence Data

XAS is an element-specific technique that can identify the spatial lo-
cation, oxidation state, and local molecular coordination environment of
specific elements in a sample. The fluorescence signal arises from excita-
tion of core electrons in all atoms of a given element as selected by the
X-ray energy (Kelly et al., 2008). A high-intensity X-ray beam produced
by a synchrotron can be focused to a (sub)micron-scale spot size to map
the abundance of multiple elements in a multicomponent sample (Sutton
and Rivers, 1999). We used synchrotron micro X-ray fluorescence (μ-XRF)
to simultaneously collect 420× 350μm2 maps of 11 elements (arsenic, iron,
chromium, manganese, calcium, titanium, vanadium, nickel, copper, zinc,
gallium, and germanium) from a soil sand grain after chemical treatments
with sodium arsenite solutions. The maps were collected at Beamline X27A
at the National Synchrotron Light Source at Brookhaven National Labora-
tory. The soil sand grain was rastered by an approximately 10 × 10μm2

focused X-ray beam, producing maps comprised of 42×35 pixels. Resulting
fluorescence X-rays were measured at each pixel to simultaneously detect the
concentration of elements within the irradiated volume of soil material at
that pixel. Based on grain composition, beam flux, and the incident X-ray
energy, measurements of the targeted elements were largely constrained to
the thin mineral-organic coating on the outer portion of a quartz sand grain.
Here, we focus only on the iron, arsenic, and chromium fluorescence data
collected after the final arsenic treatment, which showed the strongest cor-
relation. Spatial maps plotted in Figure 1 show that each element exhibited
positive spatial correlation at short distances.

The X-ray fluorescence signals of most elements analyzed (on the log
scale) were strongly correlated with the fluorescence signal of iron, as ev-
idenced by the first two pairwise scatter plots in Figure 2. The strong
correlation with iron is likely due to the high abundance of iron relative to
trace elements, and to the high binding affinity of many trace elements to
iron (and aluminum) oxide minerals (McBride, 1989). The third plot shows
that arsenic and chromium are positively correlated with each other as well.
For understanding arsenic behavior in soils, it is of interest to know whether
this positive correlation between arsenic and chromium is due simply to the
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Figure 1: X-ray fluorescence maps measured in counts per second (cps) at each pixel for
arsenic, iron, and chromium

fact that these elements are both correlated with iron, or whether there is
some dependence between arsenic and chromium that cannot be explained
by iron. The first plot in Figure 2 provides insight to this question. It
seems clear that for the largest values of iron fluorescence, the fluorescence
of arsenic depends nontrivially on that of chromium; greater amounts of
chromium tend to decrease the accumulation of arsenic at those locations
in the sample. Such a relationship could be indicative of a yet-unknown
arsenic oxidation or binding mechanism or reflect differences in iron miner-
alogy across the sample, so it is important to provide methods for testing
the hypothesis of conditional independence under spatial correlation.

3. Multivariate spatial model

In this section we define the statistical models that we apply to the mul-
tivariate spatial elemental data discussed in Section 2. Let x ∈ Rd and
denote by Z(x) = (Z1(x), . . . , Zp(x))

T a multivariate spatial random pro-
cess on Rd with p ∈ N components. Our μ-XRF data has p = 3 components
in d = 2 dimensions, and Z1(x) refers to the fluorescence of arsenic at loca-
tion x, Z2(x) to that of iron, and Z3(x) to that of chromium. If we assume
that Z is a Gaussian process, then its distribution is determined by the
mean of each individual observation, E(Zj(x)), and the covariance between
any two pairs of observations, Cov(Zj(x), Zk(y)). Throughout, we assume
that Var(Zj(x)) < ∞. The covariance must satisfy the positive definite-
ness condition, which states that for any n ∈ N, constants a1, . . . , an, and
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Figure 2: Scatter plots of X-ray fluorescence for all three pairwise relationships among
the three elements. Plotting symbol color refers to the fluorescence of the third element,
and points are plotted in the order of increasing fluorescence of the third element, so that
larger values of the third element cover smaller values.
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observations Zj1(x1), . . . , Zjn(xn), the variance of the linear combination

Var

(
n∑

i=1

aiZji(xi)

)
=

n∑
i,k=1

aiakCov(Zji(xi), Zjk(xk)) > 0.

Often, we assume that the mean and the covariance function are stationary,
meaning that E(Zj(x)) = μj , and Cov(Zj(x), Zk(y)) = Cjk(x − y), so
that the mean function is constant over space for each component, and the
covariance function for components j and k depends only on the difference
between the two locations.

3.1. Spectral Representation

A stationary multivariate spatial covariance function Cjk can be ex-
pressed in general as an inverse Fourier transform,

Cjk(x) =

∫
Rd

exp(iω′x)dGjk(ω). (1)

We will assume throughout that there exists gjk(ω) for which dGjk(ω) =
gjk(ω)dω, so (1) becomes

Cjk(x) =

∫
Rd

exp(iω′x)gjk(ω)dω, (2)

in which case we have the inversion formula

gjk(ω) =

∫
Rd

exp(−iω′x)Cjk(x)dx.

In many applications, such as for the μ-XRF data we consider here, we
are interested in the process only on a lattice with spacing δ ∈ R, that is,
Zj(δx), x ∈ Zd. In this case, the function exp(iω′(δx)) (as a function of
x ∈ Zd) is aliased with exp(i(ω + 2πj/δ)′(δx)) for any j ∈ Zd. Thus we
consider only the aliased spectral density

fjk(ω) =
∑
j∈Zd

gjk(ω + 2πj/δ),

for ω ∈ [−π/δ, π/δ]d . The covariance function at lag δx can then be ex-
pressed as

Cjk(δx) =

∫
[−π/δ,π/δ]d

exp(iω′(δx))fjk(ω)dω, (3)
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with inversion formula

fjk(ω) =

(
2π

δ

)d ∑
x∈Z2

Cjk(δx) exp(−iω′(δx)).

The conditions for positive definiteness of Cjk(x) under representation (3)
are that the p×p matrix f(ω) with (j, k)th entry fjk(ω) be positive definite
everywhere on [−π/δ, π/δ]d except possibly on sets of Lebesgue measure
zero. The X-ray fluorescence data we consider here are always observed on
a lattice, where we define the lattice spacing to be δ = 1, so usually we can
ignore δ in the notation.

3.2. Conditional Correlation

In multivariate modeling, it is often natural to consider the conditional
dependence structure of the various components. For example, our μ-XRF
data elicit the question of whether arsenic and chromium are conditionally
uncorrelated given iron. In general, one may be interested in the conditional
correlation between components i and j in the p-variate spatial process. For
simplicity here, we assume that μj = 0 for every j, although the results
generalize easily to non-zero means. To understand how to define and spec-
ify models for which components are conditionally uncorrelated, we define
Z−ij(x) = (Zk(x) : k �= i, j) and the residual processes

εij(x) = Zi(x)−
∑
u∈Zd

aij(x− u)TZ−ij(u),

εji(x) = Zj(x)−
∑
u∈Zd

aji(x− u)TZ−ij(u),

where aij(u) and aji(u) are the optimal (p − 2) × 1 linear filters chosen
to minimize Var(εij(x)) and Var(εji(x)). In other words, aij(·) and aji(·)
define the best linear unbiased predictors of Zi(x) and Zj(x) given Z−ij(·).
Then we define the conditional covariance between components i and j given
the rest as

Rij(u) = Cov(εij(x+ u), εji(x)),

and say that components i and j are conditionally uncorrelated given the
rest if Rij(u) = 0 for every u ∈ Zd. This is an extension to more than
one dimension of the definition given in Dahlhaus (2000), and in the case
of no spatial correlation, this definition reduces to the usual definition of
conditional correlation.
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Stationary multivariate process models with this property are most easily
specified in the spectral domain, as seen in the following theorem.

Theorem 1. Components i and j are conditionally uncorrelated given the
rest of the components if and only if f−1(ω) has a zero in the (i, j)’th entry
for almost every ω.

A proof of this result is given in the appendix. In the case of p = 3 com-
ponents, which is of interest for our μ-XRF elemental data, it is straightfor-
ward to place conditions on the entries of the (3× 3) matrix f(ω) in order
to guarantee a zero in the inverse. Specifically, f−1(ω) has a zero in entry
(1, 3) if and only if

f12(ω)f23(ω) = f22(ω)f13(ω), (4)

and we show in Subsection 3.3 how to enforce this constraint when the
spectral density matrices are specified parametrically.

3.3. Specific Model for f

A general specification for fjk(ω) that guarantees positive definite f(ω)
is

fjk(ω) =
√

sj(ω)sk(ω)ρjk(ω), (5)

where sj(ω), sk(ω) > 0 and integrable, and ρjk(ω) = |ρjk(ω)| exp(iφjk(ω))
is the (j, k)th entry of the coherence matrix ρ(ω), a p×p a Hermitian positive
definite matrix with ones on the diagonal, that is, a correlation matrix for
complex-valued random variables. The possibility that φjk(ω) �= 0 allows for
phase relationships among the various components. Further, the marginal
spectrum for the jth component is sj(ω).

Under the specification in (5), we can write

f(ω) = D(s(ω))ρ(ω)D(s(ω)),

where D(s(ω)) = diag(
√

s1(ω), . . . ,
√

sp(ω)). This implies that f(ω) is
positive definite, since pre- and post-multiplying a positive definite matrix
by a square full rank matrix and its transpose gives a positive definite matrix,
and it implies that

f−1(ω) = D−1(s(ω))ρ−1(ω)D−1(s(ω)).
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Since D(s(ω)) is diagonal, a zero in the inverse of f(ω) corresponds to a zero
in the inverse of ρ(ω), so the specification in (5) is also useful to specifying
conditional dependence relationships through the matrices ρ(ω).

To see how this is useful in the 3-component case that we consider here,
we write

ρ(ω) =

⎡
⎣ 1 ρ12(ω)

∗ ρ13(ω)
∗

ρ12(ω) 1 ρ23(ω)
∗

ρ13(ω) ρ23(ω) 1

⎤
⎦ ,

where ∗ denotes complex conjugation. The following theorem describes how
to constrain ρ13(ω) in order to force components 1 and 3 to be conditionally
uncorrelated given component 2 when the phase has a certain form.

Theorem 2. If p = 3, then

(i) Components 1 and 3 are conditionally uncorrelated given component
2 if and only if ρ13(ω) = ρ12(ω)ρ23(ω) for almost every ω ∈ Td; in
this case, ρ(ω) is positive definite if and only if |ρ12(ω)|2 < 1 and
|ρ23(ω)|2 < 1.

(ii) If ρ13(ω) �= ρ12(ω)ρ23(ω) and φjk(ω) can be expressed as φj(ω) −
φk(ω) for every j and k, then ρ(ω) is positive definite if and only if
|ρ12(ω)|2 < 1, |ρ23(ω)|2 < 1, and

|ρ12(ω)||ρ23(ω)| − u(ω) < |ρ13(ω)| < |ρ12(ω)||ρ23(ω)| + u(ω),

where u(ω) =
√

1− |ρ12(ω)|2
√

1− |ρ23(ω)|2.
A proof is given in the appendix. Theorem 2 makes it possible to per-

form a likelihood ratio test of the hypothesis that components 1 and 3 are
conditionally uncorrelated given component 2 by considering the reduced
model in which ρ13(ω) = ρ12(ω)ρ23(ω) for every ω ∈ Td versus the full
model in which |ρ13(ω)| is allowed to vary across its allowable values for ev-
ery ω ∈ Td. The fact that the result requires a special form for the phase is
a restriction, but the restriction obviously includes models with zero phase,
and it also includes translational models, in which the phase can be written
as φjk(ω) = ω′(hj − hk), where hj = (hj1, hj2) defines a translation in Zd.

For the purpose of testing the hypothesis that components 1 and 3
are conditionally uncorrelated given component 2, we propose the follow-
ing specification for the cross coherence spectra: let γij(ω) : T2 → [−1, 1]
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and rij ∈ (−1, 1). Then define

|ρ12(ω)| = r12γ12(ω)

|ρ23(ω)| = r23γ23(ω)

|ρ13(ω)| = |ρ12(ω)||ρ23(ω)| + r13u(ω)γ13(ω).

This choice for the form of |ρ13(ω)| allows for a one-parameter test for
conditional correlation since r13 = 0 implies that components 1 and 3 are
conditionally uncorrelated given component 2.

3.4. Parametric forms for spectral densities and coherence

The marginal spectral densities must be positive and integrable to pre-
serve positive definiteness of the covariance function. Finley et al. (2009)
suggested models for which the spectral density can be written as sj(ω) =
sj1(ω1)sj2(ω2). Thus, we can choose any one-dimensional forms sjk(ω) avail-
able from the time series literature, such as autoregressive or moving average
spectral densities (Brockwell and Davis, 2009). So-called separable models
are advantageous for exact likelihood computations, but it is also important
to propose models that do not possess the separability property.

One particularly flexible parametric family of non-separable spectral
density functions is

sj(ω) = sj(ω1, ω2) =
σ2
j(

1 + α2
j (sin

2(ω1/2) + sin2(ω2/2))
)νj+1 , (6)

where σj, αj , νj > 0. This family is of interest because if the lattice spacing
is δ, then we may express the spectral density as

sj(ω) = sj(ω1, ω2) =
σ2
j(

1 +
(αj

δ

)2 (
sin2

(
δω1
2

)
+ sin2

(
δω2
2

)))νj+1 ,

which tends to the spectral density of the isotropic Matérn covariance func-
tion as δ → 0, so we refer to (6) as the quasi Matérn spectral density. The
three parameters (σj , αj , νj) may suffer from lack of identifiability in certain
asymptotic settings, just as is the case for the Matérn covariance (Zhang,
2004). The form in (6) assumes that the process is invariant to 90 degree
rotations of the domain. We discuss in Section 5 how to modify this model
to treat the two dimensions differently.

Gaetan and Guyon (2010) describe how to derive spectral density func-
tions for parametric simultaneous auto-regressive (SAR) and conditional
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auto-regressive (CAR) models. For example, the isotropic nearest neighbor
SAR model in two dimensions is

Zj(x1, x2) =
αj

4
[Zj(x1 − 1, x2) + Zj(x1 + 1, x2)+

Zj(x1, x2 − 1) + Zj(x1, x2 + 1)] + εj(x1, x2), (7)

with |αj | < 1, and εj(x1, x2) has mean zero and variance σ2
j . This model

has spectral density

sj(ω) = sj(ω1, ω2) =
σ2
j(

1− αj

2 (cos(ω1) + cos(ω2))
)2 . (8)

(Gaetan and Guyon, 2010). If we allow the exponent in the denominator of
8 to vary, we obtain the more flexible model

sj(ω) = sj(ω1, ω2) =
σ2
j(

1− αj

2 (cos(ω1) + cos(ω2))
)νj+1 , (9)

where the form of the exponent, νj+1, is a convention chosen to correspond
to that found in the isotropic Matérn spectral density and the quasi Matérn
spectral density in Equation (6).

We use similar parametric representations for the γij(ω), which are con-
strained to [−1, 1]:

γij(ω) = γij(ω1, ω2) =
1(

1 + a2ij(sin
2(ω1/2) + sin2(ω2/2))

)mij+1 ,

with aij ,mij > 0, or alternatively we could choose

γij(ω) = γij(ω1, ω2) =
(1− |aij |)mij(

1− aij
2 (cos(ω1) + cos(ω2))

)mij+1 ,

with |aij | < 1 and mij > 0.

3.5. Estimation with maximum likelihood and Whittle likelihood

Let n = (n1, . . . , nd) be the vector containing the dimensions of the
lattice, so that we observe Zj(x) for j = 1, . . . , p at locations x = (x1, . . . , xp)
where x ∈ Jn = {x : 1 ≤ xj ≤ nj, 1 ≤ j ≤ p}. Then if there are no missing
values, we have n = n1 × . . . × nd observations. In Section 3, we did not
impose any restrictions on the distribution of the process–we described only
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their second-order properties. In Section 4, we simulate from mean-zero
Gaussian process models with the covariance functions that arise from the
spectral densities and coherence functions that we specify.

The negative Gaussian loglikelihood is (up to an additive constant)

L(θ) =
1

2
log detΣθ +

1

2
ZTΣ−1

θ Z,

where Z is a vector containing the observations, and Σθ is the covariance
matrix of the observations, respecting the ordering of the observations in
Z. In general, the computation of the Gaussian loglikelihood requires the
Cholesky decomposition of the pn × pn covariance matrix, which requires
O((np)3) floating point operations, as well as the O((np)2) memory required
for storing it. When the data are observed on a lattice, the Gaussian log-
likelihood may be approximated by the Whittle likelihood,

LW (θ) =

∫
[−π,π]d

[
log det fθ(ω) + I(ω)Hfθ(ω)

−1I(ω)
]
dω, (10)

where fθ is the spectral density with parameter θ, H denotes the Hermitian
(conjugate) transpose, and I(ω) = (Ij(ω)) for j = 1, . . . , p contains the
d-dimensional discrete Fourier transforms (DFT) of the observations,

Ij(ω) =
1√
n

∑
x∈Jn

Zj(x) exp(−iω′x). (11)

Typically, we approximate the integral in (10) by summing over a finite
number of Fourier frequencies ω, in which case all necessary values of (11)
can be computed efficiently with a fast Fourier transform (FFT) algorithm.

The Whittle likelihood is known to be susceptible to edge effects and pro-
duces parameter estimates with slow convergence in models for univariate
data when the dimension of the lattice is greater than 1. Indeed, the num-
ber of observations near the boundary of the lattice is O(n1−1/d), and thus
increases nontrivially with the total number of observations when d > 1. To
alleviate the edge effect issue, Guyon (1982) suggested a modification that
arises from the DFT of an unbiased covariance estimate, and Dahlhaus and
Künsch (1987) suggested to taper the observations near the boundaries of
the lattice and proved that their procedure produces asymtotically efficient
parameter estimates when d ≤ 3. The tapering approach involves multi-
plying the observations by a window function h(x) that approaches zero
smoothly when x approaches the boundaries, and the resulting likelihood
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approximation becomes

LT (θ) =

∫
[−π,π]d

[
log detfθ(ω) + Ih(ω)

Hfθ(ω)
−1Ih(ω)

]
dω,

where Ih(ω) contains the tapered versions of the DFT

Ih,j(ω) =

⎛
⎝ d∏

k=1

nk∑
j=1

hk(xj)
2

⎞
⎠

−1/2 ∑
x∈Jd

(Zj(x)h(x)) exp(−iω′x), (12)

where h(x) = h1(x1/n1)× . . .×hd(xd/nd) is the product of univariate taper-
ing functions. A common choice for hk(u) is a cosine taper, also known as
a Tukey window. The tapering functions also usually contain a parameter
that controls the number of observations near the boundary to taper, and a
typical choice is to taper 5-10% of the observations on each boundary.

4. Simulation Study

The simulations in this section study the behavior of Whittle likelihood
estimates of parameters governing the coherence of multivariate spatial lat-
tice data when the dimension of the lattice is 2. The purpose of the study is
to demonstrate how the strength of spatial dependence affects the parame-
ter estimates in the Whittle likelihood and how tapering may be employed
to improve parameter estimation, especially when the sample size is large.
We study the performance of tapered and untapered parameter estimates
as the size of the lattice increases under two spatial dependence scenarios.
In particular, we consider lattices of size n1 × n2 for n1 = n2 ∈ {10, 30, 50},
and we taper either 0% or 10% of the observations on each boundary using
a cosine taper. In all simulations, we assume that the spatial covariance
functions are invariant to 90-degree rotations and that the spectral density
matrices are real, so that the phase relationships are zero. All of the models
will assume conditional independence between components 1 and 3 given
component 2, and we maximize the Whittle likelihoods without this as-
sumption in place. This allows us to report the sampling distribution of the
parameter estimates under the null hypothesis of conditional independence
between components 1 and 3 given component 2. The Whittle likelihoods
do not use information from the zero frequency.

Due to possible lack of identifiability, we fix νj = mij = 1 in all the
simulations and assume they are known. We simulate from the quasi
Matérn model with (σj , αj , νj) = (1, α, 1) for every j, and r12 = r23 = 0.7,
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n1 = n2 Taper r12 = 0.7 r23 = 0.7 r13 = 0

10
0% 0.697 (0.014) 0.703 (0.012) -0.074 (0.053)
10% 0.697 (0.014) 0.703 (0.013) -0.061 (0.052)

30
0% 0.699 (0.005) 0.695 (0.004) -0.014 (0.024)
10% 0.699 (0.006) 0.696 (0.004) -0.051 (0.025)

50
0% 0.696 (0.003) 0.696 (0.003) -0.022 (0.015)
10% 0.698 (0.003) 0.698 (0.003) -0.009 (0.010)

Table 1: Average estimates and standard errors (in parentheses) for rij parameters under
Scenario 1 (weaker spatial dependence). True values of the parameters are given at the
top of the table.

n1 = n2 Taper a12 = 0.3 a23 = 0.3

10
0% 0.207 (0.020) 0.194 (0.018)
10% 0.209 (0.020) 0.196 (0.018)

30
0% 0.279 (0.008) 0.277 (0.007)
10% 0.287 (0.009) 0.289 (0.007)

50
0% 0.287 (0.004) 0.285 (0.004)
10% 0.297 (0.004) 0.295 (0.004)

Table 2: Average estimates and standard errors (in parentheses) for aij parameters under
Scenario 1 (weaker spatial dependence). True values of the parameters are given at the
top of the table.

r13 = 0 (conditional independence), aij = 0.3, mij = 1. The values of a13
and m13 are not relevant for the simulation since r13 = 0. When fitting the
models, we assume that the νj and mij are known, and we estimate σj, αj ,
rij , and aij for i and j = 1, 2, 3. Our simulations consider two scenarios:
weaker spatial dependence in which α = 3 and stronger spatial dependence
in which α = 6.

In Tables 1-4, we report the average parameter estimates and the stan-
dard error of the average over 100 simulations. As expected, parameter
estimates generally improve as the sample size increases. All parameters are
estimated more accurately by the Whittle likelihoods in the case of weaker
spatial dependence versus the case of stronger spatial dependence, which
is to be expected because the Whittle likelihood is exact in the case of no
spatial dependence (white noise). Tapering does not have much of an effect
when the dimensions are 10×10, which is not surprising because 10% taper-
ing means tapering only the observations exactly on the boundary. However,
when the dimensions are 50×50, tapering greatly improves estimates of pa-
rameters that are not estimated well in the untapered case, with the possible
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n1 = n2 Taper r12 = 0.7 r23 = 0.7 r13 = 0

10
0% 0.759 (0.014) 0.697 (0.016) -0.075 (0.055)
10% 0.758 (0.014) 0.696 (0.016) -0.054 (0.054)

30
0% 0.669 (0.007) 0.664 (0.006) -0.021 (0.023)
10% 0.680 (0.005) 0.675 (0.005) -0.012 (0.031)

50
0% 0.679 (0.004) 0.686 (0.004) 0.002 (0.018)
10% 0.692 (0.003) 0.694 (0.003) 0.063 (0.021)

Table 3: Average estimates and standard errors (in parentheses) for rij parameters under
Scenario 2 (stronger spatial dependence). True values of the parameters are given at the
top of the table.

n1 = n2 Taper a12 = 0.3 a23 = 0.3

10
0% 0.250 (0.021) 0.161 (0.020)
10% 0.249 (0.021) 0.162 (0.020)

30
0% 0.186 (0.012) 0.188 (0.010)
10% 0.242 (0.010) 0.246 (0.008)

50
0% 0.242 (0.006) 0.245 (0.007)
10% 0.282 (0.005) 0.282 (0.005)

Table 4: Average estimates and standard errors (in parentheses) for aij parameters under
Scenario 2 (stronger spatial dependence). True values of the parameters are given at the
top of the table.
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Figure 3: Scatter plots of the estimates of a13 versus the estimates of r13 with n1 = n2 = 50
and a 10% taper. When the estimate of r13 is not near zero (the truth), the estimate of a13

is large, ensuring that γ13(ω) is near zero except for at a small range of low frequencies.
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exception of r13 in the case of strong spatial dependence. We note that all
estimates of r13 tend to be more variable than are the other parameter es-
timates. This is likely due to the fact that, in this parameterization, when
aij is large, the coherence at all but the lowest frequencies may remain very
small even when |rij | is not close to zero. In Figure 3, we plot the estimates
of a13 against the estimates of r13 for the case of strong spatial dependence,
dimension 50×50, and 10% tapering. Indeed, the estimate of r13 is far from
zero only in the cases when a13 is large.

5. Analysis of X-ray Fluorescence Data

In this section, we analyze the μ-XRF data with the purpose of making
inference about the multivariate correlation structure in the presence of spa-
tial dependence. The models discussed are for the centered log fluorescence
signals, that is, we construct models for

Yj(x) = Zj(x)− Zj,

where Zj(x) is the log fluorescence at location x, and Zj is the sample mean
of the log fluorescence of component j. We assume that Yj(x) has mean
zero and is Gaussian, so that correlation and dependence are equivalent.
We model the spectral densities and coherences with an anisotropic version
of the quasi Matérn models discussed in Section 3. The models are

sj(ω) =
σ2
j

(1 + α2
1j sin

2(ω1/2) + α2
2j sin

2(ω2/2))νj+1
,

γij(ω) =
1

(1 + a2ij sin
2(ω1/2) + b2ij sin

2(ω2/2))mij+1
.

The parameters α1j and α2j control the spatial range in the vertical and
horizontal directions, respectively. Likewise, aij and bij control the coher-
ence between components i and j in the vertical and horizontal directions.
As in the simulation, we fix the exponent parameters at νj = 1 and mij = 1.

The total number of observations in this analysis is 4410, so Gaussian
maximum likelihood estimation is time-consuming but not infeasible. Our
first task is to maximize the likelihood with and without the constraint
r13 = 0 in place, that is, with and without the constraint that arsenic and
chromium are conditionally uncorrelated given iron. For the time being,
we assume that the phase is zero, reserving an investigation of the issue
of possible misalignment for later in this section. Removing the constraint
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Figure 4: Maximum likelihood (black) and Whittle likelihood (magenta) estimated spatial
covariance functions. Circles denote covariance in the horizontal direction, and triangles
denote covariance in the vertical direction.

that r13 = 0 increases the loglikelihood by 9.69 units. The unconstrained
model introduces an additional 3 parameters into the model, so under the
null hypothesis of conditional independence between arsenic and iron, twice
the change in loglikelihood follows approximately a χ2 distribution with 3
degrees of freedom, leading to a rejection of the null hypothesis. However,
for a dataset of this size, a change in loglikelihood of this magnitude offers
strong but not overwhelming evidence for conditional dependence–certainly
far weaker evidence than would have been obtained had the spatial depen-
dence been ignored.

We also estimate the model using the Whittle likelihood and a 10% co-
sine taper along each boundary. We plot in Figures 4 and 5 the estimated
spatial covariance and cross covariance functions for each element found us-
ing exact and Whittle likelihoods, without the constraint that r13 = 0. We
note that in every case the estimated correlation is stronger in the horizontal
direction than it is in the vertical direction, a finding that agrees with the
behavior apparent in Figure 1. This effect is likely due to the X-ray beam
continuously scanning in the horizontal direction and a slightly narrower
beam width in the vertical direction. The Whittle likelihood estimates dis-
agree slightly in some cases with the exact likelihood estimates, which is
not surprising since tapering essentially discards the observations near the
border of the region. Maximum likelihood estimates r13 = −0.39, so that
the coherence between arsenic and chromium is weaker than that expected
by a model with conditional independence between arsenic and chromium
given iron.

Using the unconstrained fitted model we can construct the cross spectral
density matrices for the residual processes (Appendix A) and compute
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ditional correlation between arsenic and chromium given iron. Circles denote conditional
correlation in the horizontal direction, and triangles denote conditional correlation in the
vertical direction.

the conditional spatial correlation function, which is R13(u) divided by the
square roots of the conditional variances of arsenic and chromium given iron.
The resulting correlation function is plotted in Figure 6. We note that the
conditional correlation functions are always negative, which agrees with the
exploratory analysis seen in Figure 2.

The model we fit here assumes that the cross spectral density matrices
are real and thus there are no phase relationships among the elements, but
that need not be the case for the data, where misalignment among compo-
nents may exist. To investigate this issue, we define φj(ω) = ω1hj1 +ω2hj2,
to be the phase function for component j, which corresponds to a misalign-
ment of hj1 units in the vertical direction and hj2 units in the horizontal
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Figure 7: Investigation of possible misalignment. We plot maps of difference in loglikeli-
hood from the maximum likelihood model with zero phases to one in which hj1 (vertical
axis) or hj2 (horizontal axis) are not zero for only one j. All three plots show that the
zero phase model maximizes the likelihood.

direction. For each j, we fix hk1 = hk2 = 0 for k �= j and plot the log-
likelihood function evaluated at the maximum likelihood covariance and
coherence parameters (under zero phase) for various values of hj1 and hj2.
We plot in Figure 7 the resulting loglikelihood maps, which shows that the
likelihood is maximized at zero phase for each component. Therefore, we
do not detect any phase relationships among the elements. It is interesting
to note that the loglikelihood decreases more rapidly in the vertical direc-
tion in every case, which is the result of stronger spatial dependence in the
horizontal direction.

6. Discussion

In synchrotron XAS analysis of geochemical matrices, scatter plots be-
tween pairs of elements are often used to determine correlations and to
isolate distinct populations of elemental associations for more detailed mi-
croscale, chemical-speciation analyses (Manceau et al., 2002). However,
significance testing on these simple correlations does not account for spa-
tial correlations of elements. The rapid development of XAS and other
new analytical technologies that generate massive quantities of multivariate
spatio-chemical data, as well as the scientific need to disentangle the com-
plex multivariate dependence structure in the data, call for new statistical
methodology that is able to specify and estimate flexible multivariate de-
pendence structures in a computationally efficient framework. This article
provides some of the theoretical groundwork for forcing components to be
conditionally uncorrelated in such models, both in a general case in a special
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case of three components, where we give a more specific parametric formu-
lation that allows for likelihood ratio testing. We present a simulation study
in which we demonstrate that the computationally efficient Whittle likeli-
hood can be used to estimate parameters when the sample size is sufficiently
large so as to allow for tapering of observations on the boundary. We also
present results of a detailed analysis of our μ-XRF data and conclude that
arsenic and chromium are significantly conditionally negatively correlated
given iron.

Statistical approaches that account for spatial correlation in microscale
analytical data from complex geochemical systems will provide a more robust
assessment of chemical relationships that could suggest controlling mecha-
nisms of trace-element mobility and environmental impacts. This article
provides an important way forward, but certainly there is much work to be
done in developing specific models for conditional correlation in multivariate
spatial data. For example, the linear model of co-regionalization (LMC) is
a popular choice among practitioners for modeling multivariate spatial data
(Banerjee et al., 2003). The LMC has cross spectral density function

fjk(ω) =
M∑

m=1

Tm(j, k)ρm(ω),

where each ρm(ω) is individually a valid spectral density function, and each
Tm is a positive definite p × p matrix with entries Tm(j, k). In this model,
forcing T−1

m to have a zero in entry (j, k) for every m is not sufficient to
guarantee that components j and k are conditionally uncorrelated given the
rest. In the simplest nontrivial case of m = 2 and p = 3, we also require
(T1 + T2)

−1 to have a zero in entry (j, k). The development of more gen-
eral necessary and sufficient conditions for components to be conditionally
uncorrelated in the LMC is still an open question as far as we know.

It is also important to develop models and methodology for irregularly-
spaced multivariate spatial data for which two components are be condition-
ally uncorrelated given the rest. Fuentes (2007) proposed spectral methods
for irregularly-spaced spatial data. Additionally, the work of Stein (2005),
may provide some guidance on how to define and enforce conditional inde-
pendence in multivariate Gaussian process models. In that paper, necessary
and sufficient conditions on univariate space-time covariance functions were
given to ensure that past and future observations are conditionally indepen-
dent given the entire current spatial field. It may be possible to adapt those
results to obtain conditions for conditional independence in multivariate
Gaussian process models.
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Theorem 2 provides a means for placing constraints on f(ω) to ensure
that its inverse contains a zero in a specified location when there are three
components to the process. When there are more than three components,
the corresponding constraints may be much more complicated. In these
cases, there may be some value to moving to a Bayesian framework in which
inference can be made with Markov chain Monte Carlo (MCMC). In this
framework, the multivariate models can be specified without any constraints
in place, and then MCMC samples can be used to infer the posterior distri-
bution of the entries of the inverses of the spectral density matrices.
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Appendix A. Proof for Theorem 1

Without loss of generality, let i = 1, and j = 2, and define

Y (x) =

[
Z1(x)
Z2(x)

]
and V (x) =

⎡
⎢⎣

Z3(x)
...

Zp(x)

⎤
⎥⎦ .

The best linear filters a12 and a21 satisfy

E

⎡
⎣
⎛
⎝Y (x)−

∑
u∈Zd

[
a12(x− u)T

a21(x− u)T

]
V (u)

⎞
⎠V (y)T

⎤
⎦ = 02×p−2 (A.1)

for every x,y ∈ Zd. Since we may define a Hilbert space isomorphism be-
tween closed linear manifolds of (Z1(x), . . . , Zp(x)) and closed linear mani-
folds of (exp(iω′

1x), . . . , exp(iω
′
px)), studying (A.1) is equivalent to studying

fY V (ω) −A(ω)fV V (ω) = 0,

where fY V is the cross spectral density matrix between Y and V , A con-
tains the discrete Fourier transforms of the components of a12 and a21,
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and fV V is the cross spectral density matrix of V with itself. Therefore
A(ω) = fV Y (ω)fV V (ω)

−1, and the cross spectral density matrix of the
residual processes is

fεε(ω) = fY Y (ω)− fY V (ω)fV V (ω)
−1fV Y (ω).

Writing

f(ω) =

[
fY Y (ω) fY V (ω)
fV Y (ω) fV V (ω)

]
,

and using a well-known result on inverses of block matrices, it is easy to see
that the upper left 2× 2 submatrix of f(ω)−1 is fεε(ω)

−1. Writing

fεε(ω) =

[
a11 a12
a21 a22

]
,

the (1,2) entry of fεε(ω)
−1 is −a12/det fεε(ω). This implies that a zero in

f(ω)−1 in entry (1, 2) for almost every ω is equivalent to the same being
true of the (1, 2) entry of fεε(ω), which is equivalent to the residual processes
being uncorrelated at every spatial lag, and thus components 1 and 2 being
conditionally uncorrelated given the rest. �

Appendix B. Proof for Theorem 2

The first part of (i) follows directly from (4). To simplify the notation,
we write ρ12(ω) = a, ρ23(ω) = b, ρ13(ω) = c. Then c = ab, and the Cholesky
decomposition of ρ(ω) is⎡

⎣ 1 0 0

a
√

1− |a|2 0

ab b
√

1− |a|2 √
1− |b|2

⎤
⎦ ,

and the second part of (i) follows from equivalence of Hermitian positive
definite matrices and lower triangular decompositions that have real and
positive entries on the diagonal.

To prove (ii) we write the Cholesky decomposition of ρ(ω) as

⎡
⎢⎣

1 0 0

a
√

1− |a|2 0

c b−a∗c√
1−|a|2

√
1− |c|2 − |b−a∗c|2

1−|a|2

⎤
⎥⎦ .
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If |a|2, |b|2 < 1, then ρ(ω) is positive definite if and only if

(1− |c|2)(1− |a|2)− |b− a∗c|2 > 0.

This inequality can be simplified to

|c|2 − 2Re(abc∗) + (|b|2 + |a|2 − 1) < 0, (B.1)

and we note that

abc∗ = |a||b||c| exp(i(φ1(ω)− φ2(ω) + φ2(ω) − φ3(ω) + φ3(ω) − φ1(ω)))

= |a||b||c|,

which means that (B.1) is a real quadratic function of |c|, is concave up, and
has roots

|a||b| ±
√

1− |a|2
√

1− |b|2,

completing the proof. �
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Dahlhaus, R., Künsch, H., 1987. Edge effects and efficient parameter esti-
mation for stationary random fields. Biometrika 74 (4), 877–882.

Edwards, D., 2000. Introduction to graphical modelling. Springer.

Finley, A. O., Banerjee, S., Waldmann, P., Ericsson, T., 2009. Hierarchical
spatial modeling of additive and dominance genetic variance for large
spatial trial datasets. Biometrics 65 (2), 441–451.

24



Fitts, J. P., Thieme, J., 2012. Looking into the nanoworld using x-rays.
Chemical Geology 329, 1–2.

Fuentes, M., 2007. Approximate likelihood for large irregularly spaced spa-
tial data. Journal of the American Statistical Association 102 (477), 321–
331.

Gaetan, C., Guyon, X., 2010. Spatial Statistics and Modeling. Springer.

Gneiting, T., Kleiber, W., Schlather, M., 2010. Matérn cross-covariance
functions for multivariate random fields. Journal of the American Statis-
tical Association 105 (491), 1167–1177.

Guyon, X., 1982. Parameter estimation for a stationary process on a d-
dimensional lattice. Biometrika 69 (1), 95–105.

Hayes, K. F., Roe, A. L., Brown Jr., G. E., Hodgson, K. O., Leckie, J. O.,
Parks, G. A., 1987. In situ x-ray absorption study of surface complexes:
Selenium oxyanions on α-FeOOH. Science 238 (4828), 783–786.

Hesterberg, D., Duff, M. C., Dixon, J. B., Vepraskas, M. J., 2011. X-ray
microspectroscopy and chemical reactions in soil microsites. Journal of
Environmental Quality 40 (3), 667–678.

Kelly, S., Hesterberg, D., Ravel, B., 2008. Analysis of soils and minerals us-
ing x-ray absorption spectroscopy. Methods of soil analysis. Part 5. Min-
eralogical methods 5, 387–464.

Manceau, A., Marcus, M. A., Tamura, N., 2002. Quantitative speciation
of heavy metals in soils and sediments by synchrotron x-ray techniques.
In: Fenter, P. A., Rivers, M. L., Sturchio, N. C., Sutton, S. R. (Eds.),
Applications of Synchrotron Radiation in Low-Temperature Geochemistry
and Environmental Sciences. Vol. 49. Geochemical Society - Mineralogical
Society of America, Washington, D.C., pp. 341–428.

McBride, M., 1989. Reactions controlling heavy metal solubility in soils. In:
Advances in soil science. Springer, pp. 1–56.

Stein, M. L., 2005. Space–time covariance functions. Journal of the American
Statistical Association 100 (469), 310–321.

Sutton, S. R., Rivers, M. L., 1999. Hard x-ray microprobe techniques and
applications. In: Schulze, D., Stucki, J., Bertsch, P. (Eds.), CMS Work-
shop Lectures, Vol. 9. Synchrotron Methods in Clay Science. The Clay
Minerals Society, Boulder, CO, pp. 146–163.

25



Whittle, P., 1954. On stationary processes in the plane. Biometrika, 434–449.

Yaglom, A. M., 1987. Correlation Theory of Stationary and Related Random
Functions I. Springer-Verlag.

Zhang, H., 2004. Inconsistent estimation and asymptotically equal interpo-
lations in model-based geostatistics. Journal of the American Statistical
Association 99 (465), 250–261.

26


