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We provide new approximations for the likelihood of a time series under the locally stationary
Gaussian process model. The likelihood approximations are valid even in cases when the evo-
lutionary spectrum is not smooth in the rescaled time domain. We describe a broad class of
models for the evolutionary spectrum for which the approximations can be computed particu-
larly efficiently. In developing the approximations, we extend to the locally stationary case the
idea that the discrete Fourier transform is a decorrelating transformation for stationary time se-
ries. The approximations are applied to fit nonstationary time series models to high frequency
temperature data. For these data, we fit evolutionary spectra that are piecewise constant in time
and use a genetic algorithm to search for the best partition of the time interval.
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1 Introduction

The class of nonstationary time series models is a broad one. Even if we restrict the class to univariate mean-zero
Gaussian time series, we are still left with a class that may be indexed by the set of all positive (or non-negative)
definite covariance functions defined on the observation domain. One popular approach to defining an interpretable
subclass of nonstationary time series models has been through the use of evolutionary spectra, due to Priestley
(1965, 1981). Obtaining rigorous asymptotic results under this model is difficult, and the asymptotic formulation of
Dahlhaus (1996) has provided an important way forward in this regard. Specifically, let T be the unit circle and N the
natural numbers. For T ∈ N and A a complex-valued transfer function on [0, 1]× T satisfying A(u,−ν) = A(u, ν)∗

for all (u, ν) ∈ [0, 1]× T, consider the class of real-valued stochastic processes ZT on 1, . . . , T with

ZT (t) =

∫
T
A(t/T, ν)eitνẐ(dν), (1)

where Ẑ is a mean-zero complex-valued, orthogonal measure with E|Ẑ(dν)|2 = dν and Ẑ(ν) = Ẑ(−ν)∗ to ensure
ZT is real. For T large, ZT is close to stationary over time periods much shorter than T and, thus, the sequence
of processes ZT may be called a locally stationary sequence (Dahlhaus, 1996).

Several authors have provided useful methods for estimating the evolutionary spectrum. Much of the work has
been based on expressing the evolutionary spectrum in terms of a collection of basis functions. Neumann and
von Sachs (1997) use a wavelet basis. Adak (1998) uses a windowed Fourier Basis. Dohono, Mallat and von
Sachs (1998) use the cosine packet transform. There are several papers, including Ombao et al. (2001), Ombao
et al. (2002), and Guo et al. (2003) that use the smooth, localized complex exponential basis. Dahlhaus pro-
posed estimation via the maximization of approximate Gaussian likelihoods, which depend on a local periodogram
(Dahlhaus, 1997) and the preperiodogram (Dahlhaus, 2000) under some parametric model for the evolutionary
spectrum. The preperiodogram is an estimate of the evolutionary spectrum introduced by Neumann and von
Sachs (1997). Dahlhaus’s (2000) approximate likelihood is a function of the preperiodogram and has the attractive
property that it reduces to the Whittle likelihood (Whittle, 1962) when the evolutionary spectrum is constant as a
function of time, i.e. when the process is stationary.

There may be some benefit, for both intuition and computation, to restricting the form of A. Priestley (1965)
described the class of uniformly modulated processes, whose transfer functions may be expressed as

A(t/T, ν) = m(t/T )µ(ν)
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in the locally stationary framework. Here, the variance of the process is allowed to vary with time, but the underlying
correlation structure is stationary. For many environmental time series, including the temperature data that we
analyze in this paper, the uniformly modulated model is not sufficiently flexible to adequately capture the covariance
structure exhibited in the data. We propose that a useful, interpretable, and flexible subclass of models for A is

A(t/T, ν) =

K∑
k=1

mk(t/T )µk(ν). (2)

Of course, this subclass may be made quite general if K is allowed to be infinite, but when K is taken to be a
small integer, (2) may be considered a low-rank approximation to a particular choice of transfer function coming
from a more general class. The model in (2) possesses a close relationship to the approach taken in hidden
state modeling, i.e. when the process can be described by a particular state or superposition of several states
at any given time. Here, the states are represented by the µk ’s, and the contribution of state k at time t is given
by mk(t/T ). We assume A is real and positive, although Proposition 1 below holds for complex A. A phase that
is constant in time is not identifiable, but a time-varying phase may be at least partially identifiable. We neglect
the possibility of time-varying phase relationships, which is a loss of generality. Other authors have implicitly
recognized the difficulty in estimating the phase by focusing on the estimation of the evolutionary spectrum. For
example, both of Dahlhaus’s (1997, 2000) likelihood approximations depend on A only through |A|2.

The rest of the paper is organized as follows. Sections 2 and 3 develop the quadratic form and the log de-
terminant approximations in the Gaussian likelihood, as well as describe the computational advantages that the
model in (2) facilitates. Section 4 contains a numerical experiment demonstrating the accuracy and stability of the
approximations. In Sections 5 and 6, we describe the temperature data and the piecewise constant in time model
for A. Our optimization procedure, which employs a genetic algorithm to search for a partition of the time domain,
is outlined in Section 7. The results of the model fitting for the temperature data are given in Section 8, and finally
in Section 9, we discuss the accuracy of the approximations for the models that we fit to the temperature data, and
we compare the accuracy to the likelihood approximations proposed by Dahlhaus.

2 Quadratic Form Approximation

The covariance function of the process described in (1) is given by

KT (s, t;A) = KT (s, t) = cov{ZT (s), ZT (t)}

=

∫
T
A(s/T, ν)A(t/T, ν)∗ei(s−t)νdν. (3)

Defining the T × T matrix {CT (A)}t,j+1 =
√

2π/T A(t/T, νj)e
iνjt, with νj = 2πj/T and H denoting the conjugate

transpose operation, we might expect the covariance function defined by

DT (s, t;A) = DT (s, t) = {CT (A)CT (A)H}s,t

=
2π

T

T−1∑
j=0

A (s/T, νj)A (t/T, νj)
∗
eiνj(s−t) (4)

to approximate (3). We study the convergence of the T ×T matrix ∆T (A) = DT (·, ·) to the matrix ΣT (A) = KT (·, ·)
with respect to the Frobenius matrix norm, ‖ · ‖F . The following proposition relaxes the results of Dahlhaus in that
it does not require any smoothness of A in the rescaled time domain, although it requires uniform smoothness of
A in the frequency domain.

Proposition 1: If, for each u, A(u, ν) is a complex-valued twice continuously differentiable function on T with
respect to ν, and the second partial derivative of A(u, ν) with respect to ν is uniformly bounded in u and ν, then

‖ΣT (A)−∆T (A)‖F = O(1) as T →∞.
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A proof is given in Appendix A.1. The assumption that A is real and positive is not needed for Proposition 1.
If, in addition, the condition number of ΣT (A) is bounded, the inverse matrices converge as well (see Horn and
Johnson, 2006, page 336), and thus the quadratic form term in the Gaussian likelihood can be approximated with

1

2
‖CT (A)−1ZT ‖2, (5)

where ZT is the T ×1 vector of observations. In one sense, the inverse transformation in (5) can be thought of as a
generalization of the idea that the discrete Fourier transform (DFT) is a decorrelating transformation for stationary
processes. In the stationary case, A(t/T, ν) is constant as a function of t, so we write A(t/T, ν) = S(ν). A simple
calculation confirms that CT (S)−1 = (2π)−1CT (1/S)H (where (1/S)(ν) ≡ 1/S(ν)), so the inverse transformation is
given by [

CT (S)−1ZT
]
j

=
1

S(νj)

1√
2πT

T−1∑
t=0

e−iνjtZT (t),

which is simply the DFT of the observations scaled by the square root of the spectral density, so in the stationary
case our transformation reduces to the transformation given in some versions of the Whittle likelihood.

There are several ways to compute the inverse matrix-vector product in (5). One could proceed by directly
constructing and inverting the matrix CT (A), but this is clearly intractable for large T , when even storing a T × T
matrix, let alone computing its inverse, may not be possible. We propose that the most attractive method is
to arrive at the inverse matrix-vector product using iterative methods. Convergence within a small number of
iterations depends on our ability to find a good preconditioning matrix M , for which MCT (A) has a small condition
number relative to that of CT (A). We have found that preconditioning with M = CT (1/A)H works quite well in all
of our examples. The speed of each iteration depends on how fast CT (A)w and Mw can be computed for any
vector w. The model in (2) is well-suited to facilitate efficient computation of CT (A)w. If w = (w0, . . . , wT−1)′ is a
T × 1 vector, then

[CT (A)w]t =

√
2π

T

T−1∑
j=0

[
K∑
k=1

mk(t/T )µk(νj)

]
eiνjtwj

=

√
2π

T

K∑
k=1

mk(t/T )

T−1∑
j=0

[µk(νj)wj ] e
iνjt.

Therefore, the matrix-vector product can be computed as a weighted sum of K inverse DFTs, each of which can
be computed efficiently using the Fast Fourier Transform (FFT). Furthermore, there is no need to store the matrix
CT (A). In Section 6, we explore a specific model forA for which the preconditioning multiplication can be computed
using the FFT and also does not require O(T 2) storage.

Although this estimate computes the exact inverse matrix-vector product, still present are the usual approx-
imations that occur in the spectral analysis of stationary time series. Specifically, approximation (4) effectively
assumes that the process is periodic with period T , so when the beginning and the end of the series have different
properties, the quadratic form estimate tends to have larger errors. This is true in both the stationary and nonsta-
tionary cases. We do not expect our approximation to solve this problem, but it should perform no worse in the
nonstationary case than the Whittle likelihood performs in the stationary case.

3 Log Determinant Approximation

Dahlhaus (2000, Proposition 2.5) shows that under suitable regularity conditions (including an assumption about
some third order mixed partial derivatives of A), for any ε > 0,

log det ΣT (A) =
T

2π

∫ 1

0

∫ π

−π
log{2π|A(u, ν)|2}dν du+O(T ε). (6)
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Let us instead start with the closely related approximation,

log |det{CT (A)/
√

2π}| ≈ 1

T

T∑
t,j=1

log{btj}, (7)

where btj = A (t/T, νj−1) is the tj’th entry defining the matrix BT (A). This approximation has the virtues of being
directly applicable for numerical computation and of being exact when A has the form A(u, ν) = m(u)µ(ν). Figures
1 and 2 give some numerical results illustrating typical errors of the first order approximation given in (7) for four
choices of A.

To study the approximation (7), it is helpful to consider the decomposition A(u, ν) = m(u)µ(ν)R(u, ν), where
m,µ and R are all positive-valued and bounded away from 0. This decomposition is not unique, and it should be
chosen, roughly speaking, to minimize discontinuities in R. Suppose the following conditions on R hold:

(I) For every u, R is absolutely continuous in ν with a uniformly bounded almost everywhere derivative.

(II) Except for possibly some finite number of values of u (not depending on ν), for every ν, R is absolutely
continuous in u with a uniformly bounded almost everywhere derivative. At these exceptional u values, R
may not be continuous in u, but for definiteness, we will assume R is right continuous in u for all ν.

Then our numerical results suggest

log |det{CT (A)/
√

2π}| = 1

T

T∑
j,t=1

log{btj}+O(1) as T →∞. (8)

That such a result might hold under sufficient smoothness conditions is perhaps not surprising in light of (6), which
would give an O(1) error for the log determinant if ε could be set to 0. However, the conjectures that no smoothness
assumptions are needed onm and µ and that R can have discontinuities in umight be somewhat unexpected but is
supported by the numerical results in Figures 1 and 2 and in other examples we have tried. Suppose the following
stronger condition holds:

(III) R is absolutely continuous in both u and ν with uniformly bounded almost everywhere derivative in both
arguments, and R(0, ν) = R(1, ν) for all ν.

Then our numerical results suggest

log |det{CT (A)/
√

2π}| = 1

T

∑
j,t

log{btj}+O(T−1) as T →∞. (9)

The assumption that R(0, ν) = R(1, ν) for all ν may sometimes be plausible in cases for which there is a substantial
periodic component to the nonstationarity such as for the high frequency temperature data considered in Section
5. In this example, the data encompass temperatures from a 24-hour period, so we might expect the beginning
and the end of the series to have similar properties.

In a wide variety of cases, the following refinement of (7) works quite well: defining bT+1,j = b1j ,

βtT (A) =
1

T

∑
j

log
bt+1,j

btj

and

σT (A) =
1

T

∑
j,t

{
log

bt+1,j

btj
− βtT (A)

}2

,

then approximate log |det{CT (A)/
√

2π}| by

log d̂etT (A, γ) =
1

T

∑
j,t

log{btj}+ γσT (A), (10)
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where γ appears to vary modestly with A with values between 0.25 and 0.35 working well. Note that if the
approximation in (10) had an error of o(T−1) (with γ possibly depending on A), then it would explain both (8) and
(9), since under the conditions (I) and (II), Proposition 3 in Appendix A.3 shows that σT (A) = O(1) and under
the stronger condition (III), σT (A) = O(T−1). When R is identically 1, then σT (A) = 0 and both (7) and (10) are
exact. If R is identically 1, and m is constant, then (10) is equivalent to the approximation given in some versions
of the Whittle likelihood. Another feature of the approximation (10) (and of (7) for that matter) is that it is invariant
to moving the last column of BT (A) to the first column, an invariance that can be shown to hold also for the exact
determinant. Proposition 2 in Appendix A.2 gives a theoretical justification for approximation (10) with γ = 0.25 in
a limited setting.

The errors from approximations (7) and (10) are modest in all of the examples shown in Figures 1 and 2 and all
others we have considered, ranging from about 0.001 to 1 and either decreasing with T or staying fairly constant
as T varies. The corrected approximation (10) with γ = 0.25 always does better than (7) and sometimes much
better. For j = 1, 2, Aj(1, ν)/Aj(0, ν) is not constant in ν, so we only expect (8) and not (9) to hold for these
functions. The function A1 has another discontinuity at t = 0.5: A1(0.5+, ν)/A1(0.5−, ν) is not constant in ν, but
the numerical evidence suggests (8) still holds in this case and the refined approximation log d̂etT (A, 0.25) has
error more than an order of magnitude smaller than (7) for all T considered. Figure 2 shows two functions that are
absolutely continuous in both arguments and satisfy A(1, ν)/A(0, ν) constant; we see that (7) provides excellent
approximations for these functions and log d̂etT (A, 0.25) is much better still. Figure 3 plots the ratio of the error of
(7) to 0.25σT (A) for the four functions considered in Figures 1 and 2 and it appears that the values are converging
as T increases but to somewhat different values for the different functions. Because even the approximation (7)
is very accurate when A is smooth and A(1, ν)/A(0, ν) is constant, it makes more sense to set γ to a value that
works well when these conditions do not hold (e.g., the functions A1 and A2 in Figure 1), so we recommend setting
γ = 0.25.

These approximations do not and cannot be expected to work well for any function R. In particular, discontinu-
ities in ν for R cause serious problems for the approximations, although numerical experiments suggest that the
errors can grow more slowly than T for such functions, so that the approximations may still be of some use when
there are such discontinuities. We consider discontinuities in frequency for this interaction term R (discontinuities
in the “main effect” for frequency can be captured in the function µ and do not cause any problem) to be unlikely in
practice, at least for natural processes.

4 A simple numerical experiment

To compare our approximations with those proposed by Dahlhaus (1997, 2000), we present two simple examples
in which A depends on a single parameter, and we compute the expectations of the exact loglikelihood and each
of the approximations over a range of parameter values. The purpose of this numerical experiment is to show an
example in which not only are our approximations sharper than Dahlhaus’s, but the errors are more stable with
respect to a changing parameter, which is a desirable property when maximizing the likelihood with respect to
unknown parameters, for which only differences in loglikelihood matter.

The exact negative loglikelihood for the locally stationary Gaussian time series is (minus a constant T/2 log(2π))

L(θ) =
1

2
log det ΣT (Aθ) +

1

2
Z ′TΣT (Aθ)

−1ZT .

For evolutionary spectra that are piecewise constant on K blocks in time, i.e. Aθ(u, ν) = µk,θ(ν) if u is in block k,
as will be the case in the examples to follow, we interpret the loglikelihood approximation in Dahlhaus (1997) to be

La(θ) = log d̂etT (Aθ, 0) +
1

4π

K∑
k=1

|Bk|
∫
T

Jk(ν)

|µk,θ(ν)|2
dν,
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where Bk denotes the set of times in block k, |Bk| is the length of block k, and Jk is the ordinary periodogram over
the kth block of data. If we let KT denote the covariance function of the time series with parameter θ equal to the
true value θ0, the periodograms have expectation

E(Jk(ν)) =
1

2π|Bk|
∑
s,t∈Bk

KT (s, t)eiν(s−t).

The loglikelihood approximation in Dahlhaus (2000) is

Lb(θ) = log d̂etT (Aθ, 0) +
1

4π

T∑
t=1

∫
T

IT (t/T, ν)

|Aθ(t/T, ν)|2
dν,

where IT (t/T, ν) is the preperiodogram, which has expectation

E(IT (t/T, ν)) =
1

2π

∑
1≤bt+1/2±k/2c≤T

KT (bt+ 1/2− k/2c, bt+ 1/2 + k/2c)e−iνk,

where bxc is the integer part of x. Discretizing the integrals in La and Lb into 2T terms gives sufficient accuracy in
this example. Our likelihood approximation is

Lc(θ) = log d̂etT (Aθ, 0.25) +
1

2
‖CT (Aθ)

−1ZT ‖2,

whose quadratic form has expectation

1

2
tr(CT (Aθ)

−1ΣT (Aθ0)CT (Aθ)
−H).

In this numerical experiment, we compare E(Lapprox(θ)) to E(L(θ)) over a range of values for θ and for a few
choices of θ0. Defining µθ(ν) = 1/

√
2π exp(θ cos(ν)), the two models we consider for this experiment are

A
(1)
θ (t/T, ν) =

{
1/
√

2π, t/T ∈ [0, 0.5]

µθ(ν), t/T ∈ (0.5, 1]
,

A
(2)
θ (t/T, ν) =

{
1/
√

2π, t/T ∈ [0, 0.25] ∪ (0.75, 1]

µθ(ν), t/T ∈ (0.25, 0.75]
,

so that the dynamic range of the spectrum over one segment increases with θ. We take T = 120, and we plot
in Figure 4 the covariance function corresponding to A(1)

θ , noting that when θ 6= 0, there is nonzero dependence
across blocks. Furthermore, the various approximations differ when θ 6= 0 because the process is nonstationary
in those cases. Otherwise, when θ = 0 all of the approximations are equal to the Whittle likelihood approximation,
which happens to be exact when θ = 0 because the process is stationary white noise in that case.

In Figure 5, we plot the expected values of the various likelihood approximations over a range of values of θ for
three different values of the true parameter, θ0 = 0, 1, 2. Under both models A(1)

θ and A(2)
θ , all three approximations

have a minimum at θ = 0 when θ0 = 0 and closely track the exact loglikelihood over the range θ = −0.5 to 1. This
is not surprising because when θ is small, the model is close to stationary, and the three approximations are nearly
the same. When θ0 = 1, all three approximations perform well under both models, but our new approximation
appears to improve on the existing approximations when θ becomes large. Finally, when θ0 = 2, our approximation
continues to track the exact loglikelihood, while the existing approximations fail. In these examples, when the like-
lihood approximations are not accurate, usually the error in approximating the quadratic form dominates. Under
model A(2)

θ our new approximation is nearly exact; the maximum absolute difference from the exact loglikelihood is
less than 0.01 for all values of θ and θ0 that we studied, and sometimes much smaller. We expect our approxima-
tions to perform well when the model has very short-range dependence at the beginning and the end of the series,
as most of the error associated with replacing ΣT (A) with ∆T (A) occurs in the bottom left and upper right corners
of the matrix (see the proof of Proposition 1). However, the approximation does worsen with larger values of θ.
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Table 1: Values of θ that minimize the expected value of the exact loglikelihood and each of the expected loglikeli-
hood approximations when the true value is θ0. “curv” gives the value of the second derivative at the minimum, as
approximated by finite differences.

θ0 = 0.0 θ0 = 0.5 θ0 = 1.0 θ0 = 1.5 θ0 = 2.0

min curv min curv min curv min curv min curv

A
(1)
θ

E(L(θ)) 0.000 59.25 0.500 59.28 1.000 59.40 1.500 59.66 2.000 60.24
E(La(θ)) 0.000 60.00 0.489 60.58 0.958 63.79 1.344 77.91 1.553 130.09
E(Lb(θ)) 0.000 60.00 0.489 60.63 0.955 64.22 1.331 79.99 1.529 136.11
E(Lc(θ)) 0.000 59.50 0.498 59.60 0.995 59.96 1.489 60.74 1.979 62.98

A
(2)
θ

E(L(θ)) 0.000 59.50 0.500 59.57 1.000 59.80 1.500 60.32 2.000 61.48
E(La(θ)) 0.000 60.00 0.489 60.58 0.958 63.79 1.344 77.91 1.553 130.09
E(Lb(θ)) 0.000 60.00 0.495 60.24 0.977 61.98 1.389 72.23 1.608 118.40
E(Lc(θ)) 0.000 59.50 0.500 59.56 1.000 59.80 1.500 60.32 2.000 61.44

In Table 1 we display the value of θ that minimizes each of the expected likelihood approximations for five
values of θ0, as well as the second derivative of each expected approximation at the minimum (approximated by
finite differences). For both models A(1)

θ and A(2)
θ , the existing approximations begin to fail to as θ0 increases, in that

they underestimate θ0 and overestimate the curvature at the minimum. Relative to the existing approximations,
the new approximation is stable with respect to increasing θ0, and under model A(2)

θ , the new approximation is
nearly exact although it does worsen slightly as θ0 increases. In this example, these results suggest that the
new approximation is more stable than the existing approximations, and the new approximation is robust with
respect to a model with a large dynamic range on the interior of the time domain, as is the case with A

(2)
θ . We

note that Dahlhaus’s (2000) approximation was constructed for a smoothly-varying A, whereas the examples here
have jumps. Nevertheless, it is interesting to note that this approximation performs similarly to the blockwise
periodogram approximation.

5 Description of the data

We implement the techniques introduced in this paper to analyze a set of high-frequency temperature data. Specif-
ically, we will consider two sets of 24 hours of temperature data from the Southern Great Plains region of the
Atmospheric Radiation Measurement (ARM) program, which is recorded at regular one-minute intervals. All of the
data can be accessed via the web at http://www.archive.arm.gov. Figure 6 below plots 24 hours (T = 1440) of
temperature data from the first two days in October 2005 recorded at monitoring site EF-03, as well as the first
differences of those data, which will be the focus of our analysis. We refer to the second day as the “normal” day
because the temperature is low in the morning, warms up during the day and cools back down in the evening, and
we refer to the first day as the “unusual” day due to its irregular temperature pattern.

The first differences, if considered to be a realization of a Gaussian process, show a high degree of nonsta-
tionarity. To see this more clearly, we can compute and plot local periodograms of the data (Figure 7). A local
periodogram is simply the periodogram of a window of data around the time of interest. Here we use 60 minute
windows. The vertical axis refers to frequency, and lighter colors on the image refer to higher power. The time
series is plotted on top of the local periodogram. It is evident that not only does the variance of the processes
change over time, but the shape of the spectrum changes as well. Dahlhaus (1997) uses a tapered version of a
local periodogram in his approximation of the quadratic form term in the Gaussian likelihood.

The local periodogram seems to be a good diagnostic and exploratory tool for finding nonstationarities, but as
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an estimate of the evolutionary spectrum, it is highly window-dependent, which is problematic when the spectral
properties of the process undergo sharp changes in time. Neumann and von Sachs (1997) describe the prepe-
riodogram, which is not window-dependent, as a starting point for their evolutionary spectrum estimator. The
preperiodogram is the DFT of a local covariance estimate and is similar to the Wigner-Ville spectrum. Dahlhaus
(2000) uses the preperiodogram instead of a local periodogram in his likelihood approximation.

6 Modeling

A simple nonstationary model for the first difference temperature process is that its evolutionary spectrum is piece-
wise constant in time. In this setting, the rescaled time interval is partitioned into a number of blocks, and a single
function of frequency describes the transfer function within each block. This model is a special case of the model in
(2). Indeed, if we have K blocks in the partition, and Ik(t/T ) = 1 if t/T is a member of block k and zero otherwise,
then

A(t/T, ν) =

K∑
k=1

Ik(t/T )µk(ν)

is piecewise constant in time. In this case, Ik contains the information about the partition, and µk describes the
transfer function within block k.

Furthermore, for a T × 1 vector u = (u1, . . . , uT ) the preconditioning transformation is given by

[
CT (1/A)Hu

]
j

=

T−1∑
t=0

K∑
k=1

Ik(t/T )

µk(νj)
ute
−iνjt

=

K∑
k=1

1

µk(νj)

T−1∑
t=0

[Ik(t/T )ut]e
−iνjt.

This can also be computed with K FFTs and does not require O(T 2) storage. Not only is this model advantageous
for the computation of the quadratic form, there is a simple and easily computed expression for the first order log
determinant approximation and the second order correction. Specifically, log(bt+1,j/btj) is zero for all t except at
the breakpoints and t = T , so we can ignore all other terms in σT (A). Therefore, the log determinant approximation
requires O(TK) computations rather than O(T 2) computations.

We will see that the piecewise constant spectrum assumption is reasonable for some periods, where it seems
that the properties of the process undergo sharp changes at several time points. For other time periods, however,
the properties of the process appear to change slowly and continuously over a long period of time. In those cases,
a transfer function that evolves continuously in time may be more appropriate. The model in (2) includes such
functions, and we describe one special case in Section 8.

We parametrize the log of the µk ’s as trigonometric polynomials,

logµk(ν) =

N−1∑
j=0

ckj cos(jν) (11)

with N = 5. As an alternative, one could parametrize with transfer functions that correspond to autoregressive
processes, which would provide a way to conduct piecewise AR modeling without having to require independence
among blocks, as is assumed in Davis et al. (2006).

7 Optimization algorithm

The optimization problem involves choosing the partition and set of ckj ’s to maximize the approximate likelihood.
It is helpful to think of the problem as a continuous optimization (choosing the ckj ’s) nested inside of a discrete
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optimization (choosing the partition). We perform the optimization by searching the space of partitions, and for
each partition, we use continuous optimization techniques to choose the ckj ’s that maximize or approximately
maximize the likelihood for that partition.

In this paper, we follow the example of Davis et al. (2006), who use a genetic algorithm to search for the
breakpoints in piecewise stationary AR models. In their approach, the minimum description length is the criterion
function used to select both the number of blocks in the partition and the breakpoints of the partition. We fix the
number of blocks, and the criterion function we wish to maximize is the approximate likelihood described herein.

The canonical form of the genetic algorithm starts with an initial population of individuals, partitions in this case,
and generates a new generation by crossing or mutating individuals from the current generation. The crossing
operation involves selecting two parent individuals from the current generation and combining their attributes to
bear a child with similar properties to its parents. The mutation operation involves selecting a single parent from the
current generation and randomly perturbing some of its attributes to bear a child with similar properties to its parent.
In both operations parents are randomly chosen from the current population, and parents with high values of the
criterion function (approximate likelihood in our case) are more likely to be chosen than parents with low values
of the criterion function. Once the population of the new generation is large enough, that generation becomes the
parent population for the next generation. New generations are created in this way until some stopping criterion is
met.

Each implementation of a genetic algorithm must therefore define the crossing and mutation operations. In our
case, we can describe a partition with K blocks by its K − 1 breakpoints. In the crossing operation, the child is
generated by uniformly sampling from the collection of its parents’ breakpoints, subject to the constraint that there
must be a minimum distance between breakpoints, 30 minutes in this application. The constraint ensures that if
both parents have a breakpoint at roughly the same location, at most one of those two breakpoints can appear
in the child’s partition. In the mutation operation, the child is generated by randomly moving one or several of its
parent’s breakpoints, subject to the same minimum distance constraint.

Our algorithm has population sizes of 40 partitions, and each child, independently of all the other children, is
generated by a crossing operation with probability 0.9 and by a mutation operation with probability 0.1. The initial
population of partitions is generated by sampling uniformly over all partitions of the time domain with the fixed
number of blocks, subject to the minimum block size constraint described earlier. The algorithm is stopped after
1000 generations.

Of course, this is only half of the optimization procedure. We must still choose the parameters defining the
transfer functions within each block to maximize the likelihood. For this parameterization, there is no simple form
for obtaining the maximum likelihood parameter estimates, so we use an iterative optimization technique such as
conjugate gradient. These techniques are quite slow compared to the time it takes to generate a new generation
of partitions. We are helped by the fact that the gradient of the likelihood with respect to the parameters can
be computed fast using techniques similar to those described for computing the likelihood and by the fact that
the Hessian is relatively sparse; the mixed partial derivatives with respect to parameters in different blocks are
zero. However, the time required is large enough to prohibit maximizing the likelihood for each partition in each
generation.

To remedy this problem, we proceed as follows. In the initial generation of partitions, we choose the parameters
for each partition by maximizing the approximate likelihood, and we store the partitions, along with the transfer
function parameters, in a table. We then use this table to assign parameters to newly generated partitions in future
generations. When a new partition is created, for each of its blocks, we find the partition in the table that has the
most similar block, take the parameters describing the transfer function for that block, and assign them to the block
of the current partition. This allows us to pick and choose parameters from several different partitions in the table
and assign them to the current partition.

Every 20 generations, we choose the parameters again by maximizing the approximate likelihood, and we
add the partitions from that generation, along with their parameters, to the table. Thus, as we move along in the
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algorithm, the table is filled in more densely, and we are more likely to find partitions in the table with blocks closely
matching the blocks of the current partition.

8 Optimization results

To choose an appropriate number of blocks for the partition, we ran our algorithm separately for varying numbers
of blocks. For each number of blocks, we repeated the optimization 10 times and recorded the estimate of A giving
the highest approximate likelihood, which means recording the partition and associated parameters. The analysis
was repeated on the data from October 1 and 2, 2005. In Figures 8 and 9, we show the best partitions from each
of the 10 runs for each number of blocks. Each best partition is represented as a row of circles plotted at the
maximum loglikelihood for that partition. This allows us to see if the algorithm provided stable estimators of the
partition and how much the likelihood increased when we added blocks to the partition.

For the “unusual” day, it seems that the algorithm returned a stable estimate of the partition for as many as five
blocks, but when we increased the number of blocks, there tended to be some disagreement among the different
runs, highlighting the inherent difficulty of searching a partition space with more than a few blocks. For the “normal”
day, the estimates were not quite as stable, perhaps suggesting that a piecewise constant in time spectrum is not
appropriate. As expected, we saw large increases in likelihood between the three- and four-block models but small
differences in likelihood between the six- and seven-block models.

One may ask whether a model with a separate transfer function in each block like we have just considered
gives a significantly better fit than a model with a single transfer function that is modulated by a different factor in
each block. Recall that the models for A fit here contain K blocks corresponding to K different spectra:

A(t/T, ν) =

K∑
k=1

Ik(t/T )µk(ν).

We refer to this as the full model. We can compare likelihoods and fitted values to those obtained from a uniformly
modulated model for A, which we refer to as the multiplicative model:

A(t/T, ν) =

K∑
k=1

ckIk(t/T )µ(ν).

This is a special case of the uniformly modulated model, in which the modulating function,

m(t/T ) =

K∑
k=1

ckIk(t/T ),

is piecewise constant in time. To compare the fits obtained for these two models, we plot the maximum likelihood
estimates for A for both models, as well as the ratio of the two estimates of A in Figures 10 and 11. Here we
consider only the best five-block partition found for the full model. We found that for the “unusual” day, the full
model increased the loglikelihood by 39.00 over the uniformly modulated model, and for the “normal” day, we
achieved an increase of 88.25 loglikelihood units.

As discussed earlier, for the “normal” day, the properties of the process appear to change slowly over several
hours, rather than undergo sharp jumps. Perhaps a model that allows the spectrum to change continuously in time
may be more appropriate. Consider the following model:

A(t/T, ν) =

K∑
k=1

Ik(t/T ) exp [αk(t− tk)/T ]µk(ν), (12)

where tk/T is the time at which block k starts. This is again a special case of the model in (2). Our maximum
likelihood estimate of A under the model in (12) with K = 5 blocks increased the loglikelihood by 27.37 over the
full model. The estimate is plotted in Figure 12.
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9 Numerical study of approximations

The time series considered here are intentionally chosen to be short enough that an exact Gaussian likelihood can
be computed but long enough that our approximation gives a significant speed-up in computation. It would be too
time-consuming to compute and maximize exact Gaussian likelihoods within the genetic algorithm, but after the
partition is chosen and fixed, maximizing the exact Gaussian likelihood once with respect to the transfer function
parameters can be completed within a few minutes on a personal computer. The exact negative loglikelihood is
(minus a constant T/2 log(2π))

L(θ) =
1

2
log det ΣT (Aθ) +

1

2
Z ′TΣT (Aθ)

−1ZT .

The details of the computation of the exact likelihood under the model described by (1) are straightforward and left
to the Appendix A.4. Again, as in Section 4, here are the approximations we consider:

La(θ) = log d̂etT (Aθ, 0) +
1

4π

K∑
k=1

|Bk|
∫
T

Jk(ν)

|µk(ν)|2
dν,

Lb(θ) = log d̂etT (Aθ, 0) +
1

4π

T∑
t=1

∫
T

IT (t/T, ν)

|Aθ(t/T, ν)|2
dν,

Lc(θ) = log d̂etT (Aθ, 0.25) +
1

2
‖CT (Aθ)

−1ZT ‖2,

θ̂ = arg minθL(θ), θ̂a = arg minθLa(θ), θ̂b = arg minθLb(θ), θ̂c = arg minθLc(θ).

We take the partitions of the time interval to be known, so in the following, θ is the parameter vector of coefficients
ckj in (11). We evaluated our approximations in two ways. The first is how well we approximated the exact log
determinant and quadratic form at θ̂c for each number of blocks. We compared our second order log determinant
approximation to the first order log determinant approximation, which is essentially what Dahlhaus (1997, 2000)
proposes, only the integral is replaced with a sum. We also compared our quadratic form approximation to that
proposed in Dahlhaus (2000), which is based on the preperiodogram, and that proposed in Dahlhaus (1997), which
in this application we take to be a sum of integrals of ordinary blockwise periodograms. The second evaluation we
considered is how close the parameters chosen by maximizing the approximate likelihoods came to maximizing the
exact likelihood. Specifically, we computed L(θ̂)− L(θ̂approx) for each of the three approximations. This evaluates
each approximation based on its ability to return an estimate that nearly maximizes the exact likelihood.

Figures 13 and 14 show that for both days, while the two approximations of the log determinant are equivalent
in the stationary (one block) case, the second order approximation always gave an improvement over the first order
approximation when there was more than one block in the partition. Furthermore, the second order approximation
appears to retain a roughly equal level of accuracy regardless of the number of blocks, which is as good of a result
as one could hope for with this approximation. Specifically, we would not expect the approximation to be more
accurate in the nonstationary case than it is in the stationary case.

It appears in this example that our quadratic form approximation is more stable than those proposed by
Dahlhaus. For the “normal” day the preperiodogram and blockwise periodogram estimates are inaccurate in
the models with five or more blocks. In these cases, the issue is that the preperiodogram and the blockwise
periodogram estimates find some low frequency information in the block that encompasses data roughly between
hours 15 and 16, which is a similar situation to that encountered in the numerical experiment in Section 4. Tapering
the observations within each block helps in these cases, but our approximation is still superior in the circumstances
we have studied. The third plot in Figures 13 and 14 shows that for these data, the error in the likelihood approxi-
mation is dominated by the quadratic form.

Figure 15 shows that in all of our examples, maximizing our approximate likelihood always came closer to
maximizing the exact likelihood, although the Dahlhaus (1997) approximation performs well on the “unusual” day.
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For the “normal” day, we do not include the estimates for more than four blocks when using Dahlhaus’s likelihoods
because the quadratic form problem produced unreasonable estimates of A.

10 Concluding remarks

We have provided a numerical example and an application with temperature data that suggest that our Gaussian
likelihood approximations are sharper and more stable than those proposed by Dahlhaus. Although we have no
theorems proving that our approximations are uniformly more accurate, they have performed better in the specific
examples we have studied. If the evolutionary transfer function can be written in the form in (2), the approximations
can be computed efficiently. Otherwise, the approximations–particularly the quadratic form–are computationally
intensive for long time series. However, the model in (2) is easily adaptable to diverse applications by adjusting the
form of the component transfer functions, µk, and their respective modulating functions, mk. The log determinant
approximation may require alterations to facilitate fast computation in cases when the spectrum is not piecewise
constant in time. For example, when we approximate the log determinant term for the model in (12), we can ignore
all the terms in σT (A) except those at the breakpoints and end of the series. This should provide reasonable
approximations when the spectrum does not vary too quickly in time between the breakpoints. The quadratic form
term does not require such an adjustment. However, more effort may be required to obtain a suitable preconditioner
for the iterative algorithm, which should not affect the accuracy of the quadratic form (as long as the iterative solver
converges) but will affect the speed of convergence.
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Appendix

A.1

In this section, we prove Proposition 1:

Proposition 1: If, for each u, A(u, ν) is a complex-valued twice continuously differentiable function on T with
respect to ν, and the second partial derivative of A(u, ν) with respect to ν is uniformly bounded in u and ν, then

‖ΣT (A)−∆T (A)‖F = O(1) as T →∞.

Proof: We define fu,v(ν) = A(u, ν)A∗(v, ν). Because A(u, ν) is twice continuously differentiable with respect to ν
for each u, fu,v is also twice continuously differentiable on T for every u and v. Therefore, the Fourier series of fu,v
is uniformly convergent (Körner, 1988, Theorem 9.6), so we can write

fu,v(ν) =

∞∑
k=−∞

cu,v(k)eikν .

Furthermore, the Fourier coefficients may be bounded by (Körner, 1988, Lemma 9.5)

|cu,v(k)| ≤ M1

|k|2
,
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where M1 = supu,v,ν |∂2/∂ν2fu,v(ν)|. We also have
∫
fu,v(ν)dν = cu,v(0) < ∞ because fu,v is uniformly bounded

on T. Using the Fourier series representation, we may write the elementwise error as

|DT (s, t)−KT (s, t)| =∣∣∣∣∣∣2πT
T−1∑
j=0

∞∑
k=−∞

cu,v(k)eikνjeiνj(s−t) −
∫ π

−π

∞∑
k=−∞

cu,v(k)eikνeiν(s−t)dν

∣∣∣∣∣∣
=

∣∣∣∣∣∣2πT
∞∑

k=−∞

T−1∑
j=0

cu,v(k)eikνjeiνj(s−t) −
∞∑

k=−∞

∫ π

−π
cu,v(k)eikνeiν(s−t)dν

∣∣∣∣∣∣
=

∣∣∣∣∣
∞∑

l=−∞

2πcu,v((t− s) + lT )− 2πcu,v(t− s)

∣∣∣∣∣
=

∣∣∣∣∣∣
∞∑
|l|=1

2πcu,v(t− s+ lT )

∣∣∣∣∣∣
≤
∞∑
|l|=1

2πM1

|t− s+ lT |2
,

where the order of summation and integration can be switched because of the absolute summability of the Fourier
coefficients. Now we compute the square of the Frobenius norm.

‖∆T (A)− ΣT (A)‖2F =
∑

0≤|t−s|≤T−1

 ∞∑
|l|=1

2πM1

|t− s+ lT |2

2

≤ 2

T−1∑
k=0

T−k∑
h=1

 ∞∑
|l|=1

2πM1

|k + lT |2

2

Since k is between 0 and T , the largest term in the sum is the one with |k − T |2 in the denominator, so we rewrite
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the sum as

1

2
‖∆T (A)− ΣT (A)‖2F =

T−1∑
k=0

T−k∑
h=1

(
2πM1

|k − T |2
+

∞∑
l=1

2πM1

|k + lT |2
+

−∞∑
l=−2

2πM1

|k + lT |2

)2

≤
T−1∑
k=0

T−k∑
h=1

(
2πM1

|k − T |2
+

∞∑
l=1

2πM1

|lT |2
+

−∞∑
l=−1

2πM1

|lT |2

)2

=

T−1∑
k=1

T−k∑
h=1

(
2πM1

|k − T |2
+

2

T 2

∞∑
l=1

2πM1

l2

)2

=

T−1∑
k=1

T−k∑
h=1

(
2πM1

|k − T |2
+

2π3M1

3T 2

)2

≤
T−1∑
k=1

T−k∑
h=1

2

(
4π2M2

1

|k − T |4
+

4π6M2
1

9T 4

)

≤
T−1∑
k=1

(
8π2M2

1

|k − T |3

)
+

8π6M2
1

9T 2

=

T−1∑
j=1

(
8π2M2

1

j3

)
+

8π6M2
1

9T 2

≤ 8π2M2
1

∞∑
j=1

1

j3
+

8π6M2
1

9T 2

= M2
1

(
8π2ζ(3) +

8π6

9T 2

)
<∞. �

The function ζ is the Riemann-Euler zeta function, and ζ(3) ≈ 1.202.

A.2

For the log determinant approximation (10) described in Section 3, a value for γ of 0.25 has some theoretical
justification. Let BT (A) = {btj} be as described in Section 3 and PT = {ptj} be the T × T matrix which performs
the inverse DFT (scaled by T−1/2), so that CT (A) =

√
2πPT ◦ BT (A), where ◦ is the element-wise product.

Consider the special case in which all entries of BT (A) are 1 except for those in the k’th row (i.e. t = k) so that
CT (A) =

√
2π(PT + ekv

H), where v is the vector with j’th element (bkj − 1)p̄kj and ek is the unit vector along the
k’th coordinate.

Proposition 2: If bkj = eεhj , then with γ = 0.25,

log
∣∣∣detCT (A)/

√
2π
∣∣∣ =

1

T

∑
j,t

log{btj}+ γσT (A) +O(ε3)

as ε→ 0.

Proof: By the matrix determinant lemma (Harville, 1997),

det(CT (A)/
√

2π) = det(PT )(1 + vHP−1T ek).

Because PT is a unitary matrix, its determinant is ±1, and its inverse is its conjugate tranpose. Therefore,

∣∣∣det
(
CT (A)/

√
2π
)∣∣∣ = 1 + vHP−1T ek = 1 +

1

T

T∑
j=1

(bkj − 1).
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Now consider what happens as ε→ 0. Expanding 1
T

∑T
j=1 bkj in a Taylor series through order ε2 and writing h̄ for

1
T

∑T
j=1 hj , we have ∣∣∣det

(
CT (A)/

√
2π
)∣∣∣ = 1 +

εh̄+
ε2

2T

T∑
j=1

h2j +O(ε3)

 .

Taking the log gives

log
∣∣∣det

(
CT (A)/

√
2π
)∣∣∣ = εh̄+

ε2

2T

T∑
j=1

h2j −
1

2
ε2h̄2 +O(ε3)

= εh̄+
ε2

2T

T∑
j=1

(hj − h̄)2 +O(ε3)

We have 1
T

∑T
j,k=1 log{bkj} = εh̄, so that the simple approximation (7) captures the O(ε) term in the log deter-

minant. Furthermore, straightforward calculations yield σT (A) = 2ε2

T

∑T
j=1(hj − h̄)2, so that (10) has error O(ε3)

when γ = 0.25. �

A.3

In Section 3, we considered the decomposition A(u, ν) = m(u)µ(ν)R(u, ν), where m, µ, and R are all positive-
valued and bounded away from 0. In this appendix we explore the asymptotics of σT (A) in each of two cases:
Case 1:

(I) For every u, R is absolutely continuous in ν with a uniformly bounded almost everywhere derivative.

(II) Except for possibly some finite number of values of u (not depending on ν), for every ν, R is absolutely
continuous in u with a uniformly bounded almost everywhere derivative. At these exceptional u values, R
may not be continuous in u, but for definiteness, we will assume R is right continuous in u for all ν.

Case 2:

(III) R is absolutely continuous in both u and ν with uniformly bounded almost everywhere derivative, and
R(0, ν) = R(1, ν) for all ν.

Proposition 3: Under the conditions of Case 1, σT (A) = O(1), and under the conditions of Case 2, σT (A) =

O(T−1).

Proof: Recall that

σT (A) =
1

T

T∑
t=1

T∑
j=1

{
log

bt+1,j

btj
− 1

T

T−1∑
k=0

log
bt+1,k

btk

}2

.

Writing ut = t/T and using the decomposition of A and R(0, ν) = R(1, ν) for all ν, it is easily shown that

σT (A) =
1

T

T−1∑
t=0

T−1∑
j=0

{
log

R(ut+1, νj)

R(ut, νj)
− 1

T

T−1∑
k=0

log
R(ut+1, νk)

R(ut, νk)

}2

. (13)

Expanding log{R(ut+1, νj)/R(ut, νj)} in a Taylor series gives

log
R(ut+1, νj)

R(ut, νj)
=
R(ut+1, νj)−R(ut, νj)

R(ut, νj)
+O

({
R(ut+1, νj)−R(ut, νj)

R(ut, νj)

}2
)
.
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Under the conditions of Case 2, using the uniformly bounded derivative condition, and the fact that R is bounded
away from 0, we know that

R(ut+1, νj)−R(ut, νj)

R(ut, νj)
= O(T−1).

Therefore, in (13) σT (A) is T−1 multiplied by the sum of T 2 terms, each of which is O(T−2), so σT (A) = O(T−1).
Under the conditions of Case 1, R has finitely many discontinuities in u. Therefore,

R(ut+1, νj)−R(ut, νj)

R(ut, νj)
=

{
O(T−1) no discontinuities between ut and ut+1

O(1) at least one discontinuity between ut and ut+1.

In (13), there are finitely many t for which the sum over j is O(T ), so σT (A) = O(1). �

A.4

In order to compute the exact Gaussian likelihood, we must construct the exact covariance matrix, which results
from the covariance function

KT (s, t) =

∫
T
A(s/T, ν)A(t/T, ν)∗eiν(s−t) dν.

Here, we compute this integral numerically with the sum

2π

J

J−1∑
j=0

A(s/T, νj)A(t/T, νj)
∗eiνj(s−t),

where νj = 2πj/J , and J is a large integer (J = 4000 gives adequate accuracy in our examples). The computation
is made efficient with the FFT, and the covariance matrix is filled quickly by taking advantage of its block Toeplitz
structure under the piecewise constant spectrum model.

After the covariance matrix is constructed, we compute the Cholesky decomposition U . Then the log determi-
nant term is simply the sum of the log of the diagonal entries of U , and the quadratic form term is Z ′TΣT (A)−1ZT =

‖U ′−1ZT ‖2. Finally, we compute U ′−1ZT with forward substitution.
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Figure 1: Absolute approximation errors of log determinants for A1(u, ν) = exp{4π−1ν(2u− b2uc)} and A2(u, ν) =

exp{4π−1ν sin(8.5πu)}. Symbol j corresponds to Aj , black to approximation (7) and gray to approximation (10)
with γ = 0.25.
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θ with θ = 1. We plot KT (sn, t) for s1 = 50 (dots), s2 = 60 (+),

s3 = 61 (circles), and s4 = 70 (×). The vertical line indicates the breakpoint in the process.
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Figure 5: Expected values of the negative loglikelihood approximations La(θ), Lb(θ), and Lc(θ), with true parameter
θ0 = 0 (black), θ0 = 1 (blue), and θ0 = 2 (magenta). The solid line indicates the expected value of the exact
loglikelihood L(θ).
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Figure 7: Local periodograms with 60 minute windows for both days
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Figure 8: Optimization results for “unusual” day. Each row of circles represents the best partition found with the
genetic algorithm.
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Figure 9: Optimization results for “normal” day. Each row of circles represents the best partition found with the
genetic algorithm.
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Figure 10: Maximum likelihood estimate of the time-varying transfer function of the “unusual” day under the mul-
tiplicative model (top), the full model (middle), and the ratio of the full model estimate to the multiplicative model
estimate (bottom).
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Figure 11: Maximum likelihood estimate of the time-varying transfer function of the “normal” day under the mul-
tiplicative model (top), the full model (middle), and the ratio of the full model estimate to the multiplicative model
estimate (bottom).
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Figure 12: Maximum approximate likelihood estimate of the model in (12) for the “normal” day.

24



1 2 3 4 5 6 7
−1.5

−1

−0.5

0

D
iff

er
en

ce
 fr

om
 e

xa
ct

 v
al

ue

Log determinant

No. of blocks
1 2 3 4 5 6 7

−2

0

2

4

6

8
Quadratic form

No. of blocks
1 2 3 4 5 6 7

−2

0

2

4

6

8
Negative log likelihood

No. of blocks

Figure 13: For the “unusual” day, the difference from the approximation to the exact value of the log determinant,
the quadratic form and the loglikelihood for our approximations (black) and Dahlhaus’s approximations (1997,
magenta), (2000, blue).
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Figure 14: For the “normal” day, the difference from the approximation to the exact value of the log determinant,
the quadratic form and the loglikelihood for our approximations (black) and Dahlhaus’s approximations (1997,
magenta), (2000, blue).

25



1 2 3 4 5 6 7
−1.5

−1

−0.5

0

Number of blocks

D
iff

er
en

ce
 fr

om
 e

xa
ct

 m
ax

im
um

Unusual Day

1 2 3 4 5 6 7
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Number of blocks

D
iff

er
en

ce
 fr

om
 e

xa
ct

 m
ax

im
um

Normal Day

Figure 15: Exact loglikelihood on both days evaluated at the maximum likelihood estimate found using our approx-
imation (black) and Dahlhaus’s approximations (1997, magenta), (2000, blue). Difference from exact maximum
loglikelihood, L(θ̂)− L(θ̂approx) is plotted.
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