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Abstract: We propose a nonstationary Gaussian likelihood approximation for the

class of evolutionary spectral models for data on a regular lattice. Lattice data in-

clude many important environmental data sources such as weather model output or

gridded data products derived from satellite observations. The likelihood approx-

imation is an extension of the Whittle likelihood and is computationally efficient

to evaluate when the evolutionary transfer function can be expressed in a flexible

low-dimensional form. The low-dimensional form for the evolutionary transfer func-

tion is an attractive modeling framework since it allows the practitioner to build

nonstationary models in a sequential manner and choose the appropriate dimen-

sion based on changes in approximate loglikelihood. While the transfer functions

are low-dimensional, the resulting covariance matrices are generally full rank, and

thus no rank reduction is required for the computational efficiency of the methods.

We study the covariance matrix implied by the likelihood approximation and give

its asymptotic rate of approximation to the exact covariance matrix. We evaluate

the likelihood approximation in a simulation study and show that it can produce

asymptotically efficient parameter estimates when an operation similar to taper-

ing is applied. We introduce an algorithm based on the Ising model to partition

the domain into stationary subregions and show in a simulation that the methods

can reliably recover an unknown partition. We apply our modeling and estimation

framework to analyze spatial-temporal output from a regional weather model com-

prised of 151,200 wind speed values, and we demonstrate that the fitted covariances

are consistent with local empirical variograms.

Key words and phrases: Fast Fourier Transform, Ising model, locally stationary,

spectral analysis.

1. Introduction

In many environmental datasets, when the temporal or spatial domain is

large, the assumption of stationarity is often obviously violated. Environmental

processes depend on diverse geography, seasonal variation, and a wide array

of other complex influences that can rarely be considered constant over a large

region or an extended length of time. An incorrect specification of the covariance

function can be detrimental for prediction, especially for assessing the uncertainty

in prediction. Further, when the spatial-temporal domain is large, the number

of observations in the dataset is often large as well, so when the data call for

nonstationary models, they also call for computationally efficient methods for
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fitting those models.

We consider specifying and fitting nonstationary Gaussian process models to

data observed on a regular spatial-temporal lattice. Lattice data include many

important environmental data sources, such as numerical climate or weather

model output, and many processed data products, such as Level 3 satellite data,

which are usually interpolated to a grid. Here, we consider output from the

HIRLAM weather model that consists of 151,200 spatial-temporal wind speed

values. If the model is stationary, and the data locations are on a regular lattice,

the Whittle likelihood (Whittle (1954)) can be used in place of the exact like-

lihood in order to perform approximate inference, but the Whittle likelihood is

not valid when the model is nonstationary.

We propose a new computationally efficient Gaussian likelihood approxima-

tion for nonstationary d-dimensional lattice data that is a generalization of the

Whittle likelihood. This work extends to higher dimensions a likelihood approx-

imation for nonstationary time series introduced in Guinness and Stein (2013),

and addresses edge effects that are negligible in the d = 1 time series case but

are nonnegligible when d > 1. The work here also makes use of the Ising model

to partition the domain into stationary subregions, whereas the previous work

in Guinness and Stein (2013) employed a genetic algorithm. The nonstation-

ary models we study use the idea of evolutionary spectra originally proposed by

Priestley (1965) for nonstationary time series data. Evolutionary spectral models

allow us to specify the local covariance properties flexibly and guarantee that the

resulting full covariance matrices are always positive definite. To gain a better

understanding of the asymptotic properties of the model that our approximation

implies, we adopt the locally stationary framework advanced by Dahlhaus (1996),

who studied nonstationary time series with evolutionary spectra. In d > 1 di-

mensions, the notation is slightly more burdensome, but the concept is essentially

the same as it is in the d = 1 time series case.

Specifically, let Nd be the set of d-vectors of nonnegative integers. For any

n = (n1, . . . , nd) ∈ Nd, define Jn to be integer lattice of size n, that is, the set

of vectors x = (x1, . . . , xd) with 1 ≤ xj ≤ nj for every j = 1, . . . , d. Define T to

be the unit circle and A(u,ω) : [0, 1]d ×Td → C to be a complex-valued transfer

function with
∫
Td |A(u,ω)|2dω < ∞ for every u. Let x/n = (x1/n1, . . . , xd/nd)

and Z(ω) be a d-dimensional orthogonal increment process. For x ∈ Jd, the

sequence of processes Yn defined by

Yn(x) =

∫
Td

A(x/n,ω) exp(iω′x)dZ(ω) (1.1)

is locally stationary. In Section 3, we require the components of n to grow at the

same rate. Let ∗ denote complex conjugation. If A(u,−ω) = A(u,ω)∗ for every
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u and ω, and Z(−ω) = Z(ω)∗ for every ω, then the processes are real-valued,

and if Z is Gaussian, then Yn is Gaussian as well.

The locally stationary model is convenient since for any permissible choice

of A the covariance function for Yn is given by

Kn(x,y) = Cov(Yn(x), Yn(y)) =

∫
Td

A(x/n,ω)A(y/n,ω)∗ exp(iω′(x− y))dω,

(1.2)

and we denote by Kn(A) the covariance matrix for the vector Yn containing the

observations at all locations x ∈ Jn. Then defining n =
∏d

j=1 nj , we can write

the Gaussian loglikelihood for A based on Yn as

−�0(A;Yn) =
n

2
log(2π) +

1

2
log detKn(A) +

1

2
Y T
n Kn(A)

−1Yn. (1.3)

When A(u,ω) is not constant as a function of u, computing the likelihood gen-

erally requires the O(n2) storage of Kn(A) and the O(n3) operations required to

compute the Cholesky decomposition of Kn(A).

In Section 2 we propose an approximation to �0 that is based on the exact

likelihood for a process that approximates Yn. The computational efficiency of

our likelihood approximation relies on expressing A in the form

A(x/n,ω) =

M∑
m=1

wm(x/n)Am(ω), (1.4)

where M is a small integer. The representation in (1.4) is useful for facilitating a

sequential approach to building nonstationary models. For example, whenM = 1

the model is what Priestley (1965) termed uniformly modulated, in which the

correlation structure is stationary, but the variance of the process is allowed to

vary across the domain. Uniformly modulated models include stationary models

as a special case when w1(x) is constant. If uniform modulation is not sufficient

to capture the nonstationary nature of the process, the modeler may increase M

to 2, adding a second component to A. This procedure may continue until an

appropriate value of M is chosen. In Section 6, we apply this sequential model-

fitting approach to a spatial-temporal field of wind speed output from a regional

weather model. Based on the results of the data analysis, we recommend using

changes in relative loglikelihood to choose M .

A common method of constructing nonstationary spatial covariance func-

tions is through convolving a stationary process–usually white noise–with kernels

that vary across the spatial domain (Higdon (1998), Calder (2007)). Fuentes

(2002a) studied connections between kernel convolution models and models with

evolutionary spectra. Kernel convolution models are very flexible, but when the
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number of observations is large, the computational burden required for construct-

ing the covariance matrices and evaluating the likelihood call for the convolution

to be discretized into a small number of components, which results in a reduced

rank covariance matrix for the observations. The low-dimensional representation

for A in (1.4) should not be confused with a low-rank approximation for a co-

variance matrix. Even in the lowest dimensional stationary case where M = 1,

any covariance matrices generated from the transfer function will generally be

full rank when A is bounded away from 0.

Another computationally efficient approach for modeling and estimating non-

stationary processes has been through the specification of stochastic partial differ-

ential equations with parameters that vary across the spatial domain (Lindgren,

Rue, and Lindström, 2011). Efficient likelihood computations with these models

are possible when the process model can be approximated by a Markov random

field, which induces sparsity in the inverse covariance matrix. Our methods do

not require sparsity in either the covariance matrix or the inverse covariance

matrix, and we show in a simulation study in Section 5 that the approximate

likelihoods are capable of producing efficient parameter estimates.

The low-dimensional form for the transfer function implies that the nonsta-

tionary process can be written as a linear combination of stationary processes,

which is also true of the approach taken in Fuentes (2001) and Fuentes (2002b),

where the nonstationary process is written as a weighted sum of independent

stationary processes. Here, however, we do not assume that the stationary pro-

cesses are independent; they have dependence structure implied by the covariance

function in (1.2), so even if the weight functions are indicators, the covariance

between the process at any two locations will generally be nonzero.

2. The Likelihood Approximation

The likelihood approximation arises from the exact likelihood for a process

that approximates a locally stationary process. Defining ωj = 2πj/n to be a

Fourier frequency for j ∈ Jn, we approximate the stochastic integral in (1.1) with

the sum

Ỹn(x) =
(2π)d/2

n1/2

∑
j∈Jn

A(x/n,ωj) exp(iω
′
jx)Ẑ(ωj), (2.1)

where Ẑ(ωj) are uncorrelated, mean-zero, unit variance complex normal random

variables satisfying Ẑ(−ωj) = Ẑ(ωj)
∗. Then we can write the approximate

process vector as a linear transformation of the vector Ẑ, as in Ỹn = Cn(A)Ẑ,

where Cn(A) is the n × n matrix that performs the transformation in (2.1).

The approximate process vector has covariance matrix Δn(A) = Cn(A)Cn(A)
H ,
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where H is the conjugate transpose. In Section 3, we study the approximation

Δn(A) to the covariance matrix Kn(A). Then the loglikelihood for A based on

Ỹn is

−�(A; Ỹn) =
n

2
log(2π) + log |detCn(A)| + 1

2
‖Cn(A)

−1Ỹn‖2,

and we use �(A;Yn) to approximate �0(A;Yn).

In the stationary case, that is, when A is constant as a function of u and thus

can be written A(u,ω) = S(ω), Δn(A) has a block circulant structure and is

therefore diagonalizable by the d-dimensional discrete Fourier transform (DFT).

Thus the log determinant term is

log |detCn(S)| = nd

2
log(2π) +

∑
j∈Jn

log |S(ωj)|, (2.2)

and the inverse transformation appearing in the quadratic form is[
Cn(S)

−1Yn

]
j
=

1

(2π)d/2n1/2

1

S(ωj)

∑
x∈Jn

Yn(x) exp(−iω′
jx), (2.3)

which is simply the d-dimensional DFT of Yn scaled by the reciprocal of the

transfer function. Therefore our approximation reduces to the Whittle likelihood

approximation in the stationary case.

In the nonstationary case, the computation of Cn(A)
−1Yn can be made

efficient when A has the form given in (1.4). In this case, the transformation

Cn(A)Ẑ can be written as

Yn(x) =
(2π)d/2

(n)1/2

M∑
m=1

wm(x/n)
∑
j∈Jn

Am(ωj) exp(iω
′
jx)Ẑ(ωj), (2.4)

which is simply a weighted sum of M d-dimensional inverse DFTs. This allows

us to solve the system Yn = Cn(A)Ẑ efficiently using iterative methods that rely

on fast forward multiplication Cn(A)Ẑ.

Throughout the rest of the paper, we assume further that A has the form

A(x/n,ω) =
M∑

m=1

Im(x/n)Am(ω), (2.5)

where Im(x/n) is an indicator function, and
∑M

m=1 Im(x/n) = 1 for every x,

so that the set of indicator functions defines a partition of the space-time do-

main. This assumption is useful both computationally and conceptually, since if

Im(x/n) = 1, the local second-order properties of the process nearby location x
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are determined by the transfer function Am(ω). This assumption is also useful

for computing a simple preconditioner for the iterative matrix algorithm. Specif-

ically, we precondition with C(1/A)HYn, where (1/A)(ω) = A(ω), which in the

case of (2.5) can be expressed as

[
C(1/A)HYn

]
j
=

1√
2πn

M∑
m=1

1

Am(ωj)

∑
x∈Jn

Im(x/n) exp(−iω′x)Yn(x), (2.6)

which again can be computed efficiently with M applications of an FFT algo-

rithm.

The log determinant of Cn(A) is more difficult to compute, but accurate ap-

proximations exist. In this paper, we consider an extension of an approximation

suggested by Dahlhaus (2000), namely

log | d̃etCn(A)| = nd

2
log(2π) +

1

n

∑
x∈Jn

∑
j∈Jn

log |A(x/n,ωj)|.

It is also easy to see that this approximation also reduces to the log determi-

nant in the Whittle likelihood in the stationary case. The evaluation of this log

determinant approximation is efficient when A can be expressed as in (2.5).

In Section 3, we study the approximate covariance function implied by

�(A;Yn), and in Section 5, we evaluate the likelihood approximation

�̃(A;Yn) =
n

2
log(2π) + log | d̃etCn(A)|+ 1

2
‖Cn(A)

−1Yn‖2. (2.7)

in simulation studies and show an example in which it can produce efficient

parameter estimates.

3. Nonstationary Covariance Matrix Approximation

The likelihood approximation �(A;Yn) arises from assuming that the process

has covariance matrix Δn(A) = Cn(A)Cn(A)
H instead of Kn(A). Here we study

this matrix approximation, particularly the dependence on the dimension d. We

also require each dimension to grow at the same rate, that is, nj = ajn
1/d with

0 < aj < ∞ for every j. A theorem establishes the rate at which the matrix error

in Frobenius norm grows with n for dimension d, and requires A to be uniformly

smooth in frequency.

Theorem 1. If A(u,ω) is d+1 times continuously differentiable in ω for every

u, then

‖Δn(A)−Kn(A)‖2F = O(n1−1/d).
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The proof is given in Section S1 of the supplementary material. Since our

likelihood approximation �(A;Yn) reduces to the Whittle likelihood in the sta-

tionary case, the same is true of the covariance matrix assumed by Whittle

likelihood. Guyon (1982) showed further that the Whittle likelihood itself has an

approximation rate of O(n1−1/d) to the exact Gaussian loglikelihood. Although

we do not have a proof for the rate of approximation for the likelihood in the

nonstationary case, the result in Theorem 1 and the simulation results in Section

5 support the efficacy of this likelihood approximation for parameter estimation.

4. Edge Effects and Searching for Stationary Subregions

Just as with the Whittle likelihood approximation, our approximation essen-

tially assumes that the process is periodic in every dimension since the process

approximation involves only Fourier frequencies. To mitigate the effect of this

assumption on parameter estimation in the stationary case, Guyon (1982) sug-

gested estimating the spectral density via the discrete Fourier transform of an

unbiased estimator of the covariance function. More relevant to our study is the

work of Dahlhaus and Künsch (1987), who proposed tapering the observations on

the edges of the region before computing the Whittle likelihood and proved that

tapering can produce asymptotically efficient parameter estimates when d ≤ 3.

This is our method for mitigating the edge effects. When we compute the

approximate likelihood, we assume instead that A has the form

A(x/n,ω) =

m∑
j=1

Ĩj(x/n)Aj(ω) + Im+1(x/n)Am+1(ω),

where Im+1(x/n) is an indicator for a buffer zone around the boundary of the

spatial region. Then for j = 1, . . . ,m, Ĩj(x/n) = 0 if x/n is in the buffer

zone and equals Ij(x/n) if x/n is not in the buffer zone. An illustration of the

definitions of the various indicator functions is given in Figure 5.1.

In the two-dimensional simulation in Section 5, we set the buffer size to

be
√
n1/3, so that the buffer size grows with the sample size, but the overall

proportion of buffered observations shrinks to zero as n → ∞. In practice, the

buffer should be set manually, and in general it should be larger when the spatial

correlation is stronger, but the size of the buffer should be balanced against the

size of the dimensions–small dimensions cannot afford very large buffers.

We may be interested in determining whether the process has some spe-

cific nonstationary structure. Perhaps the nonstationarity covariance can be ex-

plained by some geographic or political boundaries. For example, an atmospheric

process may behave differently over land versus over ocean, or maps of incidence

of infectious diseases may vary based on different countries’ control strategies.
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In these cases, the partition functions Ij(x/n) may be assumed to be known and

correspond to coastal or political borders. In many cases, though, we may not

be able to assume that the partitions are known, so it is necessary to propose

methods for searching over the space of partitions.

Estimating the indicator functions requires searching over the space of M -

component partitions of the n observation locations. With even moderate sample

sizes, exhaustive searches are not feasible since the number of possible partitions

is Mn, and we cannot hope to always find the globally optimal partition. To

help reduce the size of the search, it seems reasonable to assume that the “best”

partitions will be composed of mostly contiguous regions, and we use a random

algorithm to search over this space.

A natural choice for generating mostly contiguous random partitions of a

lattice is the Ising model (Ising (1925)). The Ising model is a probability distri-

bution on spin lattices, S(Jn) = {s(x)}x∈Jn with s(x) = ±1. The probability

mass function for the simplest case of this distribution is

p(S;T ) =
1

c(T )
exp(−H(L)/T ),

where T is a temperature parameter, c(T ) is a normalizing constant, and

H(S) = −
∑
x∼y

s(x)s(y),

where the sum is over all pairs of adjacent locations of the lattice, and each pair

is counted once. For any positive temperature parameter T , the Ising distribu-

tion we consider places more probability mass on spin lattices with fewer spin

transitions between adjacent locations. Thus, draws from the Ising model will

produce mostly contiguous partitions of the lattice.

For even the simplest Ising model, the normalizing constants are not known,

and thus a Metropolis-Hastings algorithm is commonly used to sample from the

distribution. The Metropolis-Hastings algorithm is convenient for this appli-

cation since we wish to randomly search around the partition space. We de-

scribe the Metropolis-Hastings algorithm for sampling from the partitions. The

spin lattice S0 assigns ±1 independently to each spatial location with probabil-

ity 1/2. Our proposal distribution selects a location uniformly at random and

switches the spin at that location. The proposal S∗ is accepted with probability

min{1, exp((H(Sk)−H(S∗))/T )}.
We start by running the Metropolis-Hastings algorithm for many iterations

at a very low temperature. The low temperature helps ensure that the algorithm

converges to a local minimum. The resulting spin lattice defines our starting

partition, and we maximize our approximate likelihood over any transfer function
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parameters to obtain a starting likelihood. Then we increase the temperature

and, at each iteration, we initialize the Metropolis-Hastings algorithm with the

current partition and run it for several steps to obtain a candidate partition. If the

maximum approximate likelihood for this candidate partition exceeds the current

maximum likelihood, we accept the candidate partition as the current partition

and store the maximum approximate likelihood as the current likelihood. The

updates continue for 10 iterations and, if the approximate likelihood has increased

sufficiently, we pursue additional iterations. This allows us to quickly discard bad

starting partitions and explore more thoroughly the good candidates.

Our method for searching the partition space embeds the maximization over

the transfer function parameters inside of a search over the space of partitions

that makes use of Metropolis-Hastings updates of a spin lattice under the Ising

Model. To find partitions into more than two blocks, we use a “greedy” search

that requires our best (M + 1)-block partition to be a subpartition of our best

M -block partition. This procedure guarantees that our search will return an

(M + 1)-block partition with a higher approximate likelihood than our best M -

block partition. We note that there is no guarantee that the best (M + 1)-block

partition will be a subpartition of the best M -block partition. However, we have

found that unconstrained searches of this type into more than two blocks are not

feasible for these data and a spatial domain of this size.

5. Simulations

In Section 3 we studied the covariance model implied by the likelihood ap-

proximation �(A;Yn). However, to use the likelihood approximation in practice,

we usually require an approximation of the log determinant of Cn(A), which

led to the approximation �̃(A;Yn) in (2.7). In our simulations, we studied the

behavior of parameter estimates found by maximizing this approximation to the

likelihood, and we show that with the use of buffering, the parameter estimates

can be asymptotically efficient and nearly unbiased.

The first simulation considers the case of d = 2 and M = 2 and studies the

behavior of parameter estimates as the size of the region increases. We assume

that the evolutionary spectral density is

A(x/n,ω) = I1(x/n)A1(ω) + I2(x/n)A2(ω),

where

Aj(ω) = σj
(
1 + α2

j (sin
2(ω1/2) + sin2(ω2/2))

)−2
.

The spatial indicator functions partition the domain with a diagonal line as seen

in Figure 5.1 and are assumed to be known. We also take σ1 and σ2 as known,
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I1(x/n) = 1

I2(x/n) = 1

Ĩ1(x/n) = 1

Ĩ2(x/n) = 1

I3(x/n) = 1↙

Figure 5.1: Indicator Functions

Example Simulation with n = 1800
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Figure 5.2: A single realization of the nonstationary lattice process with n = (30, 60).

and the focus is then on the estimation of the parameters α1, α2 > 0, which

can be interpreted as range parameters since increasing the range parameters

produces stronger spatial correlation. We set α1 = 1 and α2 = 2 for all the

simulations, so observations on the right side of the region generally exhibited

stronger spatial correlation, and we set σ1 = 2.7379 and σ2 = 5.9131 so that the

process had constant variance 1. An example of a simulation with n = (30, 60)

is plotted in Figure 5.2.

Computationally efficient and nearly exact simulations from these models is

possible since the stochastic integrals can be closely approximated by discretiz-

ing on a very fine evenly-spaced grid in frequency, while computing the inverse

discrete Fourier transform with an FFT. The details of the simulation of the

processes are given in Section S2 of the supplementary material.
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To obtain results on asymptotic efficiency of parameter estimates with the

Whittle likelihood, Dahlhaus and Künsch (1987) required the size of the data ta-

per to grow slower than the rate of growth of the sample size. In our simulations,

we set the size of the buffer on each edge to be
√
n1/3, rounding to the nearest

integer. The buffer essentially discards the observations near the boundary of the

region, so it will no doubt lead to some loss of efficiency relative to the maximum

likelihood parameter estimates. However, the ratio of the number of observations

in the buffer to the total number of observations is proportional to n−1/4 and

thus goes to zero as n → ∞.

We took n2 = 2n1 and, for each n = n1n2, generated 1000 simulations,

each time finding the unbuffered approximate likelihood parameter estimates,

the buffered approximate likelihood parameter estimates and, when n was less

than 1000, the exact maximum likelihood parameter estimates. The computa-

tion of the exact likelihood is too expensive with the largest sample sizes. To

evaluate the estimates, we report the average bias and compare the root mean

squared errors to the asymptotic standard deviations obtained by inverting the

Fisher information matrices. The Fisher information was computed exactly for

all cases except n = 20000 and n = 45000, where we used a stochastic Hutchinson

trace estimator (Hutchinson (1990)) to approximate the Fisher information; this

produces an unbiased estimate of the Fisher information. Each trace estimator

was repeated with 50 independent probing vectors to produce a highly accurate

estimate. We report the results in Tables 5.1 and 5.2.

The results in Table 1 indicate that the buffered approximate likelihood

can produce asymptotically efficient parameter estimates for this nonstationary

model. The buffered approximate likelihood was always an improvement over

the unbuffered approximate likelihood, which is expected due to the connections

between our approximate likelihood and the Whittle likelihood and the fact that

the Whittle likelihood requires tapering to produce efficient parameter estimates

when d = 2 or d = 3. When using the buffered approximate likelihood, the root

mean squared errors for both parameter estimates approached the asymptotic

error derived by inverting the Fisher information matrix. The results on the

average bias in Table 2 show that the buffered approximate likelihood appears

to produce estimates that are nearly unbiased, with the size of the bias generally

decreasing with the sample size. The biases for both approximate likelihoods were

almost always negative, which is a consequence of the fact that the approximate

likelihood assumes periodic correlation when it does not exist.

In the second simulation, we took d = 3 and M = 2, but did not assume

the partition known. Our goal was to study how well the methods are able to

recover an unknown partition in three dimensions. We set n1 = 20, n2 = 20, and
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Root Mean Squared Error
Asymp. SE Exact Unbuffered Buffered

n α1 α2 α1 α2 α1 α2 α1 α2

200 3.744 4.761 3.651 4.610 6.213 16.493 4.283 5.212
512 2.310 2.943 2.341 2.941 4.002 11.128 2.505 3.244
800 1.843 2.342 1.889 2.370 3.247 9.270 2.041 2.552
1800 1.221 1.557 – – 2.173 6.270 1.378 1.709
3200 0.913 1.164 – – 1.622 4.752 0.989 1.276
5000 0.730 0.930 – – 1.342 3.836 0.748 0.982

20000 0.363 0.463 – – 0.637 1.895 0.369 0.489
45000 0.242 0.309 – – 0.434 1.304 0.252 0.350

Table 5.1: Asymptotic standard error (based on the Fisher information) and root mean
squared error (all multiplied by 100) for estimating α1 and α2 using the exact likelihood,
the unbuffered approximate likelihood, and the buffered approximate likelihood. The
root mean squared errors are based on 1000 simulations for each sample size.

Average Bias
Exact Unbuffered Buffered

n α1 α2 α1 α2 α1 α2

200 0.002 0.575 −4.788 −14.627 −0.069 −0.872
512 0.076 0.215 −3.136 −10.093 0.031 −0.580
800 0.030 0.105 −2.569 −8.478 −0.042 −0.478

1800 – – −1.729 −5.871 −0.024 −0.511
3200 – – −1.306 −4.471 −0.023 −0.410
5000 – – −1.109 −3.616 −0.072 −0.297
20000 – – −0.523 −1.806 −0.010 −0.114
45000 – – −0.355 −1.251 −0.013 −0.110

Table 5.2: Average bias (multiplied by 100) for estimating α1 and α2 using the exact like-
lihood, the unbuffered approximate likelihood, and the buffered approximate likelihood.
The average biases are based on 1000 simulations for each sample size.

n3 = 30 (n = 12000). The component transfer functions were

Am(ω) = (1 + α2
m(sin2(ω1/2) + sin2(ω2/2) + sin2(ω3/2)))

−1,

and we set α1 = 4 and α2 = 8. To define the partition, we set I1(x/n) = 1 if

x1/n1 < −2x3/n3 + 1.5. If we consider the first two smaller dimensions to be

spatial dimensions and the third larger dimension to be a temporal dimension,

then there is a spatial-temporal interaction in the nonstationarity. The partition

changes near the middle of the time domain, with the bottom of the spatial region

changing before the top of the spatial region. Figure 5.3 includes an illustration

of the partition. Such a scenario may occur as a weather front moves across

a region. We consider this boundary to be irregular since it does not divide
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Figure 5.3: Proportion of fitted models out of 100 simulations that assign each location
to the first block. The true model is plotted as well.

the three-dimensional lattice into three-dimensional rectangles, in which case the

Whittle likelihood could be applied separately to each rectangular subregion.

We simulated from this model 100 times, and for each simulation, we used

the Ising model as described in Section 4 to search over the space of partitions

with a buffer size of 2 observations in each dimension. For each simulation, we

ran the search algorithm separately with 200 random starting partitions, and we

kept the final partition with the highest likelihood as the best-fitting model for

each simulation. In Figure 5.3, we plot the proportion of best-fitting models (out

of 100) that assigned each spatial location to the first block of the partition. Here

the first block is the one with shorter estimated spatial range since the labeling

of the blocks is otherwise arbitrary. We plot these maps at several values in the

third dimension. We see that the method is generally capturing the nonstationary

structure present in the true model.

To investigate our methods’ ability to select an appropriate number of components–

M = 2 in this case–we fit models with M = 3 and M = 4 components using the

greedy search algorithm described in Section 4. In Figure 5.4, we plot histograms

of twice the change in the approximate loglikelihood among the 100 simulations

as we move from an M = j − 1 model to an M = j model. Increasing M by one

introduces four additional parameters, which means that selection criteria based

on AIC select M > 2 in every simulation, so stronger loglikelihood penalties
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Figure 5.4: Histograms of twice the change in approximate loglikelihood from the M =
j − 1 to the M = j model.

are necessary. The BIC criterion selects M > 2 in 27 simulations if the penalty

4 log(n) is used and in 8 simulations if the penalty 4 log(2πn) is used. In Section

6, we advocate using changes in loglikelihood proportional to n for selection of

M is less idealized situations, where practically minor deviations from station-

arity can result in large changes in approximate loglikelihood when the number

of observations is very large. This criterion was greater than 5% for the change

from M = 1 to M = 2 in all 100 simulations and was less than 1% for the change

from M = 2 to M = 3 in all 100 simulations.

6. Regional Weather Model Data

In this section, we apply our methods to a set of wind speed outputs from

the HIRLAM regional weather model. The model region contains the strait of

Gibraltar separating southern Spain from northern Morocco. In Figure 6.5, we

plot a map of the region and see that it contains parts of the Atlantic Ocean,

the Mediterranean Sea, Africa, and Europe, so the geography of the region is

diverse, especially for the study of surface winds, which depend heavily on the

roughness of the Earth’s surface. The output from the model is at a resolution of

0.05 degrees in both latitude and longitude and 3 hours in time. The size of the

region is n = (21, 30, 240) in (latitude, longitude, time), which gives a total of

n = 151, 200 observations. Of course, the grid boxes do not form an exact lattice

since the surface of the Earth is curved, but the region is small enough and

close enough to the equator that the lattice assumption is a good approximation.

Square-root-transformed wind speeds appear to satisfy the Gaussian assumption

more closely than untransformed wind speeds do. Histograms supporting this

transformation can be found in Section S3 of the supplementary material.

The assumption of stationarity in both the mean and the covariance structure

does appear to be violated. We plot in Figure 6.5 the mean of square root wind

speed for each spatial grid box, where the mean is taken over time. It is clear
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Figure 6.6: Local variograms in seven subregions indicating nonstationarity covariance.

that the model produces stronger winds over water than over land, which is not

surprising since the sea surface is generally smoother than the land surface. The

covariance structure is also not stationary, which can be illustrated by plotting

average local empirical variograms. The local empirical variograms are from

subsets of data consisting of a 5 × 5 grid of observations at a single time point.

The empirical variograms are computed for each time point and averaged over

time. This is repeated for seven different spatial subsets, and the results are

plotted in Figure 6.6. The local variograms indicate that the spatial correlation

of wind speed is strongest in the Atlantic Ocean subregion and in the western

part of the Spanish subregion.

Since the data are spatial-temporal, we write x = (s, t) to denote spatial

location s and temporal location t, and we write ω = (ν, λ) = (ν1, ν2, λ) to

denote spatial frequencies ν = (ν1, ν2) and temporal frequency λ. We model the
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data as

Y (s, t) = μ1(s) + μ2(t) + Y0(s, t),

where Y0 is a mean-zero process with evolutionary spectrum

A(x/n,ω) =

M∑
m=1

Im(s)Am(ω),

where Im are indicator functions depending on space alone, and Am has para-

metric form

Am(ω) = σ2
m

(
1 + α2

m(sin2(ν1/2) + sin2(ν2/2)) + β2
m sin2(λ/2)

)−2
, (6.1)

so that the spatial range parameter for component m is αm, and the temporal

range parameter for component m is βm, as opposed to three-dimensional model

in the simulation, which assumed a constant range among the three dimensions

within a stationary subregion. Each component also has a scale parameter σ2
m.

Although we do not pursue them here, it is possible to define more flexible

parametric forms for the spatial-temporal transfer functions. One could assign a

parameter for the exponent in (6.1), which is fixed there at −2, giving

Am(ω) = σ2
m

(
1 + α2

m(sin2(ν1/2) + sin2(ν2/2)) + β2
m sin2(λ/2)

)−νm
.

We could also choose a model that more flexibly distinguishes between the spatial

and temporal domains. For example,

Am(ω) = σ2
m

[(
1

2
+ α2

m(sin2(ν1/2) + sin2(ν2/2))

)γm

+

(
1

2
+ β2

m sin2(λ/2)

)δm
]−νm

,

which reduces to the previous model if γm = δm = 1.

As in the simulation study, we use a buffer to mitigate the edge effects, so

the model-fitting procedure assumes instead that

A(x/n,ω) =

M∑
m=1

Ĩm(s)Am(ω) + IM+1(s)AM+1(ω),

where IM+1(s) indicates a buffer of two observations from the spatial border,

and Ĩm(s) = Im(s) if IM+1(s) = 0, and equals zero otherwise. We do not buffer

in the time dimension since there are many more observations in time than there

are in either of the two spatial dimensions.

Since the indicator functions depend on space alone, the process is assumed

to be nonstationary in space but stationary in time. In other applications, one
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Figure 6.7: A model in which the partition is determined by the coastal boundaries. The
number above the map gives the increase in approximate loglikelihood above the best
stationary model. The buffered region is left out of the map. The variograms associated
with each subregion are plotted on the right.

could remove this constraint or, alternatively, constrain the indicator functions

to depend on time alone. The time span for the simulation is 30 days in January,

so we do not expect a significant seasonal component to the nonstationarity.

There is a possibility of a diurnal cycle to the covariance nonstationarity, but we

assume that the nonstationarity associated with the diurnal cycle is captured in

the mean function μ2(t). We estimate μ1(s) by averaging over time the square

root wind speed for each spatial grid box, and we estimate μ2(t) by averaging

the spatial map of square root wind speeds at each time point and subtracting a

grand mean. The mean functions are assumed to be known and subtracted from

the data so that we analyze the anomalies that are assumed to have a mean of 0.

We are interested in whether the nonstationary covariance may be attributed

to different atmospheric behavior over the land versus over the sea. To explore

this possibility, we fit a model with M = 2 and a partition defined by the coastal

boundaries, as seen in Figure 6.7. We find that a land/ocean model increases the

approximate loglikelihood by 89.99 units over the best stationary model. The

fitted variograms over land and ocean do not differ much, suggesting that coastal

boundaries do not explain the nonstationary covariance very well.

The empircal variograms indicate that the data do exhibit nonstationary

covariance, but the model fitted above suggests that this nonstationary covariance

model cannot be simply attributed to land/ocean effects. We use the Ising model

algorithm to search over the space of possible two-block partitions. We ran the

algorithm with 100 different starting partitions, and we plot the partition that

gives the highest approximate likelihood in Figure 6.8. This partition divides the

spatial domain into one region that contains the Atlantic and the western part
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Figure 6.8: Best 2-block partition. The number above the map gives the increase in
approximate loglikelihood above the best stationary model. The buffered region is left
out of the map. The variograms associated with each subregion are plotted on the right.

of the Spanish subregion, and one region that contains the rest of the spatial

domain. We also plot in Figure 6.8 the fitted variograms associated with the two

blocks of the best partition and see that they qualitatively match the empirical

variograms from Figure 6.6. The maximum approximate likelihood associated

with this partition increased the approximate likelihood by 4235.53 units over

a stationary model, a significantly larger increase than the increase of 89.99

loglikelihood units achieved with the land/ocean model.

To find our best 3-block partition, we searched over partitions of the spatial

domain that are formed by keeping the first block as it is in Figure 6.8, and

then partitioning the second block into two smaller blocks, for three blocks total.

Then we searched over partitions that are formed by keeping the second block

as it is, partitioning the first block into two smaller blocks. We conducted the

search with 25 different starting subpartitions of each of the two blocks. We

plot the best three-block partition we found in Figure 6.9, along with the fitted

variograms associated with the three different blocks. The three-block partition

increases the approximate likelihood by 5188.67 units over a stationary model.

The fitted variograms for both the two-block and the three-block models

agree qualitatively with the empirical variograms plotted in Figure 6.6. The

three-block model implies that the spatial correlation is strongest over the At-

lantic and the western Spanish subregion and weakest over the eastern land

regions and the Mediterranean. The model also finds that there is a small region

of weaker spatial correlation along the western coast of Morocco, suggesting that

the winds may be more variable and turbulent in this area due to the geographic

boundary between land and sea.

To explore the need for more terms in the low-dimensional form for the evo-
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Figure 6.9: Best 3-block partition. The number above the map gives the increase in
approximate loglikelihood above the best stationary model. The buffered region is left
out of the map. The variograms associated with each subregion are plotted on the right.

lutionary transfer function, we continued our sequential model fitting procedure

with M = 4 and M = 5. Each additional term comes with three additional

parameters. We denote the maximum approximate loglikelihood values for the

M -component model by LM , and in Table 6.3, we provide the resulting values.

We consider a comparison of the twice the change in loglikelihood to the number

of observations to be a useful measure of the practical value of the increased

model complexity. As we increased M from 1 to 2, twice the change in loglikeli-

hood is 5.6% of the total number of observations but less than 1% as we increased

M from 3 to 4 and 4 to 5. For these data, the M = 2 or M = 3 models are a

sufficiently complex description of the data, and we do not see much practical

value in increasing the model complexity beyond M = 3.

M 2(LM − LM−1) 2(LM − LM−1)/n
2 8471 0.056
3 1906 0.013
4 1153 0.008
5 988 0.007

Table 6.3: Changes in approximate loglikelihood with increasing model complexity. LM

gives the approximate loglikelihood for the best-fitting M -component model.

7. Discussion

We propose a new Gaussian likelihood approximation for nonstationary and

nonseparable spatial-temporal lattice models and conduct a careful study of its

properties. The approximation is computationally efficient since it relies on pre-

conditioned linear solvers and an FFT algorithm. Through simulation, we show
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an example in which the likelihood approximation produces efficient parameter

estimates when a buffering operation is applied. The fact that buffering improves

the parameter estimates is not surprising since it is well-known that tapering re-

duces edge effects and improves parameter estimates when the Whittle likelihood

is used, and our likelihood approximation is an extension of the Whittle likeli-

hood. In this work, we consider weight functions that are indicators since an

effective and efficiently computable preconditioner is available. In principle, our

methods can be extended to handle smoother weight functions as long as one can

find good preconditioners.

We advocate for a sequential procedure for building nonstationary spatial-

temporal models that is well-suited for the evolutionary spectrum models that

we study. Our methods employ parametric models for the evolutionary spectra.

The sequential procedure is implemented to estimate spatial heterogeneity in the

covariance structure of wind speed output from a regional weather model. We

employ random algorithms based on the Ising model to search over the space

of partitions of the spatial domain that separate the domain into contiguous

regions of stationarity. Our results agree with an exploratory variogram analysis

and indicate that our methods are capable of recovering the underlying spatial

structure of nonstationarity. We recommend using changes loglikelihood relative

to the number of observations to choose the number of components, M .
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S1 Proof of Matrix Approximation

Theorem 1. If A(u,ω) is d+1 times continuously differentiable in ω for every u, then

‖Δn(A)−Kn(A)‖2F = O(n1−1/d).

Proof. The covariance matrix Δn(A) has entries

Δn(x,y) =
(2π)d

n

∑
j∈Zn

A(x/n,ωj)A
∗(y/n,ωj) exp(iω

′
j(x− y)).

Define fx,y(ω) = A(x/n,ω)A∗(y/n,ω) (the dependence of f on n is suppressed). Since
A(u,ω) is d+ 1 times continuously differentiable in ω for every u, we can write

fx,y(ω) =
∑
k∈Zd

cx,y(k) exp(iω
′k)

with cx,y(k) ≤ T (maxj |kj |)−d−1 for k �= 0 for some T < ∞ (Körner, 1989). Then

Kn(x,y) =

∫
Td

∑
k∈Zd

cx,y(k) exp(iω
′(k + x− y))dω = cx,y(y − x).

Similarly,

Δn(x,y) =
(2π)d

n

∑
j∈Zn

∑
k∈Zd

cx,y(k) exp(iω
′
j(k + x− y)) =

∑
�∈Zd

cx,y(y − x+ � ◦ n),

where � ◦ n = (�1n1, . . . , �dnd). Therefore

Δn(x,y)−Kn(x,y) =
∑

�∈Zd\0
cx,y(y − x+ � ◦ n).
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The difference in Frobenius norm is

‖Δn −Kn‖2F =
∑
x,y

(Δn(x,y)−Kn(x,y))
2
=
∑
x,y

⎛⎝ ∑
�∈Zd\0

cx,y(y − x+ � ◦ n)
⎞⎠2

,

where
∑

x,y denotes
∑

x∈Zn

∑
y∈Zn

. We partition the inner sum into two parts,

Z
d\0 = {� : |�j | ≤ 1 ∀ j}\0∪ {� : |�j | > 1 for some j}

= S1 ∪ S2

Then we rewrite

‖Δn −Kn‖2F =
∑
x,y

(∑
S1

cx,y(y − x+ � ◦ n) +
∑
S2

cx,y(y − x+ � ◦ n)
)2

≤ 2
∑
x,y

(∑
S1

cx,y(y − x+ � ◦n)
)2

+ 2
∑
x,y

(∑
S2

cx,y(y − x+ � ◦ n)
)2

= 2R1 + 2R2

Treating R1 and R2 separately,

R1 =
∑
x,y

(∑
�∈S1

cx,y(y − x+ � ◦ n)
)2

≤ (3d − 1)
∑
x,y

∑
�∈S1

cx,y(y − x+ � ◦ n)2,

since S1 contains 3d − 1 terms. Therefore,

R1 ≤ (3d − 1)
∑
�∈S1

∑
x,y

T 2

maxj |yj − xj + �jnj |2d+2
.

Recall that for every � ∈ S1, |lj | = 1 for at least one j, call this j�.

R1 ≤ (3d − 1)
∑
�∈S1

∑
x,y

T 2

|yj� − xj� + nj� |2d+2

= (3d − 1)
∑
�∈S1

n

nj�

nj�∑
y=1

nj�∑
x=1

T 2

|y − x+ nj� |2d+2

= (3d − 1)
∑
�∈S1

n

nj�

nj�
−1∑

h=−nj�
+1

(nj� − |h|) T 2

|h+ nj� |2d+2

≤ (3d − 1)
∑
�∈S1

n

nj�

nj�
−1∑

h=−nj�
+1

T 2

(nj� − |h|)2d+1
,
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where the last inequality follows because nj − |h| ≤ |nj + h|.

R1 ≤ (3d − 1)
∑
�∈S1

n

nj�

⎡⎣ T 2

nj�

+ 2

nj�
−1∑

h=1

T 2

(nj� − h)2d+1

⎤⎦ .

Reversing the order of the second sum gives

R1 ≤ (3d − 1)
∑
�∈S1

n

nj�

⎡⎣ T 2

nj�

+ 2

nj�
−1∑

h=1

T 2

h2d+1

⎤⎦
≤ (3d − 1)

∑
�∈S1

n

nj�

[
T 2

nj�

+ 2

∞∑
h=1

T 2

h2d+1

]

≤ n

n1
(3d − 1)

∑
�∈S1

[
T 2

n1
+ 2

∞∑
h=1

T 2

h2d+1

]
.

The second sum in the last expression converges for every � ∈ S1, and S1 has a finite
number of elements, so R1 = O(n/n1) = O(n1−1/d).

Proceeding with R2,

R2 =
∑
x,y

(∑
�∈S2

cx,y(y − x+ � ◦ n)
)2

≤
∑
x,y

(∑
�∈S2

T

maxj |yj − xj + �jnj |d+1

)2

.

Express the set S2 = ∪∞
k=2Bk, where Bk = {� : maxj |�j| = k}. The set Bk contains

|Bk| =
d∑

j=1

(
d

j

)[
(2k)d−j − (−1)j(2k)d−j

]
elements, which is a polynomial in k of degree d− 1, which we call Pd−1(k). Then

R2 ≤
∑
x,y

( ∞∑
k=2

∑
�∈Bk

T

maxj |yj − xj + �jnj |d+1

)2

≤
∑
x,y

( ∞∑
k=2

∑
�∈Bk

T

((k − 1)n1)d+1

)2

,

since |yj − xj | < nj and n1 ≤ nj for every j. Finally,

R2 ≤ n−2d−2
1

∑
x,y

( ∞∑
k=1

TPd−1(k)

kd+1

)2

.
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The sum over k converges, and the sum over x and y contains n2 terms, so R2 =
O(n2n−2d−2

1 ) = O(n−2/d).

Therefore ‖Δn −Kn‖2F = O(n1−1/d), the size of R1.

S2 Nearly Exact Simulation

Due to the integral representation of the locally stationary processes we study, exact
simulation is not possible, but we describe how to efficiently produce nearly exact sim-
ulations. Let J denote an integer and define ω1j = 2πj/(Jn1) and ω2k = 2πk/(Jn2).
If Z(ω1j, ω2k) are uncorrelated complex normal random variables, and J is sufficiently
large, then

Yn,J(x) =

√
2π

J2n1n2

Jn1∑
j=1

Jn2∑
k=1

A(x/n, ω1j , ω2k) exp(i(ω1j , ω2k)
′x)Z(ω1j , ω2k)

is a good approximation to Yn(x), and can be computed efficiently in O(Jn log(Jn))
floating point operations with a two-dimensional fast Fourier transform. We have found
J = 8 to be sufficiently large in all of our simulations.

S3 Histograms for Square Root Transformation
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Figure 1: Histograms of wind speeds and square root wind speeds.
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