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Abstract

Recently proposed computationally efficient Markov chain Monte Carlo and
Monte Carlo Expectation-Maximization (EM) methods for estimating covari-
ance parameters from lattice data rely on successive imputations of values on
an embedding lattice that is at least two times larger in each dimension. These
methods can be considered exact in some sense, but we demonstrate that us-
ing such a large number of imputed values leads to slowly converging Markov
chains and EM algorithms. We propose instead the use of a discrete spectral
approximation to allow for the implementation of these methods on smaller em-
bedding lattices. While our methods are approximate, our examples indicate
that the error introduced by this approximation is small compared to the Monte
Carlo errors present in long Markov chains or many iterations of Monte Carlo
EM algorithms. Our results are demonstrated in simulation studies, as well
as in numerical studies that explore both increasing domain and fixed domain
asymptotics. We compare the exact methods to our approximate methods on a
large satellite dataset, and show that the approximate methods are also faster
to compute, especially when the aliased spectral density is modeled directly.

1 Introduction

The Gaussian process model plays a central role in the analysis of spatially and
spatial-temporally correlated data. It is used directly for modeling data that can be
assumed to be Gaussian and often used indirectly as a stage in a hierarchical process
model when the data are not assumed to be Gaussian (Banerjee et al., 2014). Consider
a stochastic process Z(x) ∈ R, x ∈ Rd. The defining property of a Gaussian process
is that for any n ∈ N and x1, . . . ,xn ∈ Rd, the vector Z = (Z(x1), . . . , Z(xn))

′

has a multivariate normal distribution. A Gaussian process is characterized by its
mean at every location E(Z(x)) and the covariance between its observations at any
two locations Cov(Z(x), Z(y)), and it is common to assume that both the means
and the covariances are specified by parametric functions. We write µβ = E(Z) and
Kθ = E((Z−µβ)(Z−µβ)

′) to signify a mean vector with parameter β and covariance
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matrix with parameter θ for observations at a specific set of locations. Statistical com-
putation with Gaussian process models requires algebraic manipulations involving µβ

and Kθ. The Cholesky factorization is commonly used in computing the Gaussian log-
likelihood function when Kθ has no exploitable structure. The Cholesky factorization
requires O(n3) floating point operations (flops) and O(n2) memory, so its computa-
tional burden begins to overwhelm modern standard computational facilities when n
is greater than 10,000. The addition or subtraction of the mean vector requires only
O(n) flops and memory, so we focus our attention here on computations involving
covariances and assume throughout that the mean vector is zero.

Stroud et al. (2014) recently proposed methods that leverage the computational
power of circulant embedding techniques (Wood and Chan, 1994; Dietrich and Newsam,
1997; Stein, 2002; Gneiting et al., 2006) to make inferences about parameters in sta-
tionary Gaussian random field models when data are observed on a possibly incom-
plete lattice. The methods rely on MCMC and Monte Carlo EM algorithms that
successively impute data to a larger periodic lattice, on which the Gaussian loglike-
lihood can be computed efficiently with Fast Fourier Transform (FFT) algorithms.
While the methods in Stroud et al. (2014) are exact, in that the model for the data
assumed by the algorithms is equal to the target covariance model, the methods re-
quire an embedding lattice that is much larger than the observation lattice, resulting
in at least 8 times as many imputed data points as actual observations. In our paper,
we note that when approximations of the covariance are employed, the number of im-
puted data points can be reduced substantially. We demonstrate that this reduction
in imputed values has a dramatic impact on the computational efficiency of the it-
erative algorithms for estimating covariance parameters, and while the inferences are
technically approximate, we can actually improve parameter estimation over exact
methods in the context of a fixed budget of computational time. We briefly review
the discrete spectral approximation in Section 2, and we introduce efficient methods
for computing it when the unaliased spectral density or the covariance function is
specified rather than the aliased spectral density. In Section 3, we provide numerical
experiments studying the accuracy of the discrete spectral approximation for the pur-
pose of estimating covariance parameters via likelihood methods, considering varying
strengths of spatial correlation as well as fixed- and increasing-domain scenarios. We
provide somewhat surprising examples in which the asymptotic biases of our param-
eter estimates are small even when some of the covariances at large lags are not well
approximated. The simulation studies in Section 4 demonstrate that MCMC and
Monte Carlo EM algorithms converge more quickly, and with no noticeable loss in
accuracy when the discrete spectral approximation is used, as long as the lattice is
expanded by at least a factor of 5/4 in each dimension. The methods are further com-
pared in Section 5 on oceanic satellite data, where we observe that the approximate
methods are computed faster than the exact methods, especially when the aliased
spectral density is modeled directly. We conclude with a discussion in Section 6.
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Figure 1: Illustration of the relative sizes of the embedding lattices (δJm, gray+white)
and the observation lattice (δJn, gray) used in our approximate procedures with
τ = 5/4 and in cutoff embedding, which uses τ = 3 in Stroud et al. (2014). Here, the
observation lattice has size n = (12, 12).

2 Discrete Spectral Approximation

We write δZd to denote a regular d-dimensional lattice with spacing δ > 0, meaning
that x = (x1, . . . , xd) ∈ δZd if xj/δ ∈ Z for every j. Let n = (n1, . . . , nd) be a vector
of natural numbers, and define δJn to be a rectangular subset of δZd with nj points
along dimension j. We refer to δJn as the observation lattice. We also define a larger
embedding lattice δJm, so that each component of m is larger than the corresponding
component of n, and we define the ratio τj = mj/nj ≥ 1. Exact embedding methods
typically require τj ≥ 2, and the particular method described in Stroud et al. (2014,
Section 4.1)–a variant of the cutoff embedding methods described in Stein (2002) and
Gneiting et al. (2006)–requires τj ≥ 2

√
d. In this section, we describe the discrete

spectral approximation, which allows us to construct covariance functions that are
always positive definite and periodic on δJm with τj < 2. In Figure 1, we illustrate
the sizes of the embedding lattices used in the discrete spectral approximation with
τ = 5/4 and in typical applications with cutoff embedding.

We assume throughout that the covariance function K(h) has a spectral repre-
sentation

K(h) =

∫

Rd

exp(iω′h)f(ω)dω, (1)

in terms of a continuous spectral density f(ω). Existence of the spectral density is
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a usual assumption in circulant embedding literature; for example, Wood and Chan
(1994), Dietrich and Newsam (1997), and Gneiting et al. (2006) all make this as-
sumption. Continuity of f is a slightly stronger assumption, which we use in Lemma
C.1 of the Supplementary Material. to obtain theoretical results about our methods
for computing the discrete spectral approximation when the covariance function is
specified. When data are observed on a regular lattice δZd, we need to consider only
covariances K(h) with h ∈ δZd, and thus the covariance function can be expressed
as

K(h) =
∑

j∈Zd

∫

[0,2π/δ]d
f(ω + 2πj/δ) exp(i(ω + 2πj/δ)′h)dω =

∫

[0,2π/δ]d
fδ(ω) exp(iω′h)dω,

(2)

with the second equality following by exchanging summation and integration and
using the fact that exp(iω′h) is aliased with exp(i(ω + 2πj/δ)′h) on h ∈ δZd. We
call fδ(ω) =

∑
j∈Zd f(ω + 2πj/δ) the aliased spectral density. The discrete spectral

approximation is a discretization of the integral in (2),

Rm(h) =
(2π)d

m

∑

j∈Jm

fδ(ωj) exp(iω
′

jh), (3)

where ωj = (2πj1/(δm1), . . . , 2πjd/(δmd)) are the d-dimensional Fourier frequencies
on a grid of size m. By varying the size of m–or equivalently, τ–in Rm(·), the prac-
titioner has the ability to control its accuracy. The use of discrete spectral approxi-
mations for simulating Gaussian processes has has a long history; (Cressie, 1993, pg.
204-205) gives a brief historical account. The approximation in (3) is powerful since
Rm(·) is automatically periodic with period mj in each dimension, efficient to com-
pute with FFT algorithms when fδ(ωj) is available, and guaranteed to be positive
definite, whereas the variant of cutoff embedding employed in Stroud et al. (2014,
Section 4.1) is not guaranteed to be positive definite.

The covariance function in (3) is periodic on the embedding lattice δJm, so the
resulting covariance matrix Rm for the set of all values on δJm (ordered lexicographi-
cally) has a nested block circulant structure (as defined in Appendix A of the Supple-
mentary Material). Rue and Held (2005) and Lindgren et al. (2011) discuss methods
for constructing Markov random field models that are periodic on a domain that is
slightly larger than the observation domain. Here, we do not assume that the random
field has a Markov or approximately Markov structure, only that it is stationary.
Indeed, we consider examples with the exponential covariance function, which is not
Markov in two dimensions. We propose to use the Bayesian and frequentist methods
in Stroud et al. (2014). The difference here is that we replace Kθ with Rm (which
depends on θ as well). We show in Sections 4 and 5 that this replacement has dra-
matic impacts on the computational efficiency of the methods without sacrificing the
accuracy of the parameter estimates in the examples we study. The tradeoff of our ap-
proach is its approximate nature, but the advantage is that since the approximations
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can often be made very sharp with τ < 2, the number of imputed values required for
the Monte Carlo methods is not large compared to the number of observed values,
allowing the observed values to drive the parameter updates. We demonstrate the
accuracy of this approximation for small τ in Section 3. The simulations in Section 4
show that the computational advantage of using fewer imputed values far outweighs
the drawback of the approximate nature of the method, and in Section 5, we show
that the overall computational effort is smallest when fδ(·) is modeled directly with
flexible elementary parametric functions.

2.1 Computation of Rm

In this subsection we discuss three methods for computing and approximating the
covariances Rm(h). We show in Appendix C of the Supplementary Material that

Rm(h) =
∑

j∈Zd

K(h+ δj ◦m) = lim
N→∞

N−1∑

j1=−N

· · ·
N−1∑

jd=−N

K((h1 + δj1m1, . . . , hd + δjdmd)),

(4)

where j ◦ m = (j1m1, . . . , jdmd), so when K(h) decays quickly with ‖h‖, where
‖ · ‖ denotes Euclidean distance, as in the exponential covariance function, Rm(h) is
well-approximated by a truncation of (4). This truncation does not guarantee positive
definiteness, but commonly used covariance functions such as the powered exponential
and the Matérn covariance functions (Matérn, 1960) decay quickly with ‖h‖, so the
resulting covariance matrices rarely fail to be positive definite with N = 2 or 3,
especially when the components of n are large. The matrices in the examples we
study in this paper never failed to be positive definite with N = 3, but if a matrix
were not positive definite, we could simply increase N until the matrix became positive
definite.

If the spectral density f(ω) is available in closed-form, and it decays quickly
with ‖ω‖, one may approximate fδ(ωj) by truncating

∑
k∈Zd f(ωj + 2πk/δ). This

approximation is guaranteed to generate a positive definite function. Most of the
commonly-used covariance models in spatial statistics possess the property that either
the spectral density or the covariance function decays quickly. The Matérn covariance
function, for example, decays faster than any polynomial, as do the spectral densities
for the Gaussian and Cauchy covariance functions.

In Section 5 we show that our methods are particularly efficient when the aliased
spectral density fδ(·) is modeled directly in closed form. Then the array of eigenvalues
fδ(ωj), j ∈ Jm, can be formed directly without any truncations, and Rm is thus
guaranteed to be positive definite. We recommend this modeling approach due to its
computational advantages, and we discuss in Section 5 a parametric model for fδ(·)
that mimics the flexibility of the Matérn covariance function.
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3 Numerical Studies

The accuracy of the discrete spectral approximation depends on an expansion factor
τ . The numerical studies in this section concern the resulting approximate covariance
matrix for the observations R and the effect that the number of observations, the
strength of spatial correlation, and the choice of τ have on how well R approximates
the target covariance matrix K. Since both the Bayesian and frequentist methods
discussed in this paper are likelihood-based, we study the approximations with respect
to Kullback-Leibler (KL) divergences. Let Z be the set of all observations on δJn.
Defining Lτ (θ; Z) to be the Gaussian loglikelihood function for Z under covariance
function Rm(·) with m = τn, and defining L(θ; Z) to be the Gaussian loglikelihood
function for Z under the target model, which has autocovariance function Kθ(·), the
KL divergence of our approximate model from the target model is E0(L(θ0; Z) −
Lτ (θ; Z)), where the expectation is taken with respect to the target model with
parameter θ0. The θ that maximizes Lτ (θ; Z) is consistent for θτ , the minimizer of
the KL divergence, under replication of Z (Varin et al., 2011). Since E0(L(θ0; Z))
does not depend on θ, θτ is the minimizer of

E0(−Lτ (θ; Z)) =
1

2
log detR +

1

2
tr(R−1K),

where R implicitly depends on θ and τ , and K is formed using the covariance func-
tion Kθ0(·). In this section, we compute θτ for various choices of τ in two different
asymptotic scenarios and for various values of true parameter θ0. While we do not
propose using maximizers of Lτ (θ; Z) as estimators in practice, the results of these
computations are nonetheless useful for understanding how the quality of the approx-
imate covariance functions depends on τ , the size of the observation lattice, and the
strength of spatial correlation.

The numerical studies use the isotropic exponential covariance function Kλ(h) =
exp(−‖h‖/λ) with range parameter λ. All of the studies assume a square two-dimensional
lattice. The lattice in the first set of calculations has spacing δ = (32

√
2)−1 and

λ0 = 0.15, and we specify lattice sizes of n ∈ {322, 482, 642, 802} an increasing
domain scenario. The covariance approximations are calculated with values of τ ∈
{1, 17/16, 9/8, 5/4, 3/2, 5}. Setting τ = 1 corresponds to the approximation implied
by the Whittle likelihood (Whittle, 1954). Choosing τ = 5 is intended to show how
λτ behaves when R is a very good approximation to K. In Table 1, we present the
results of the first numerical study. When τ = 1, λτ < λ0, although λτ increases with
n. This is not surprising because we expect the Whittle likelihood to underestimate
range parameters since the Whittle likelihood assumes periodic correlation on δJn
when the true covariance function is not periodic at all. For every n, λτ approaches
λ0 as τ increases, with λτ converging more quickly for larger n. For every τ > 1, λτ

approaches λ0 as n increases. This last remark is an important one because it suggests
that we obtain very accurate approximations with small τ when the number of ob-
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n
τ 322 482 642 802

1 0.1234 0.1310 0.1353 0.1380
17/16 0.1457 0.1484 0.1493 0.1496
9/8 0.1485 0.1495 0.1498 0.1499
5/4 0.1496 0.1499 0.1500 0.1500
3/2 0.1499 0.1500 0.1500 0.1500
5 0.1500 0.1500 0.1500 0.1500

Table 1: Numerical values of λτ for various choices of τ and n with constant lattice
spacing (32

√
2)−1 and λ0 = 0.15.

λ0

τ 0.05 0.10 0.15 0.20 0.25
1 0.0482 0.0932 0.1353 0.1748 0.2120

17/16 0.0500 0.0997 0.1493 0.1986 0.2477
9/8 0.0500 0.0999 0.1498 0.1996 0.2494
5/4 0.0500 0.1000 0.1500 0.1999 0.2499
3/2 0.0500 0.1000 0.1500 0.2000 0.2500
5 0.0500 0.1000 0.1500 0.2000 0.2500

Table 2: Numerical values of λτ for various choices of τ and λ0 for a lattice with 642

points and spacing (32
√
2)−1. The third column of this table is equivalent to the third

column of Table 1

servations is large, which is desirable because the methods are designed for analyzing
very large datasets.

The second numerical study considers the behavior of λτ for various choices of λ0

to understand how the performance of the approximation depends on the strength of
the spatial correlation. We fix the lattice spacing at δ = (32

√
2)−1 and the number

of lattice locations at 642. We vary λ0 ∈ {0.05, 0.10, 0.15, 0.20, 0.25}. The results
presented in Table 2 show that λτ approaches λ0 as τ increases for every choice of
λ0. We also observe that λτ converges faster to λ0 when λ0 is small, that is, when
the spatial correlation is weak. In every case, τ = 3/2 is large enough to ensure that
λτ and λ0 agree to four decimal places. In Figure 2, we plot the target covariance
functions and several of the approximations with λ = 0.25. It is important to note
that approximations need not be accurate at all spatial lags in order for λτ to be very
close to λ0. To say this more concretely with a specific example, when λ0 = 0.25 and
τ = 5/4, λτ = 0.2499 even though Rm(δ(63, 0)) = 0.2283 is not close to the target
covariance Kλ0

(δ(63, 0)) = 0.0038. This suggests that, in this specific example, it is
not necessary for Rm(h) to well approximate K(h) at large lags in order to produce
a likelihood function that returns accurate parameter estimates.

The third numerical study addresses how the approximations perform in the fixed
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n
τ 322 482 642 802

1 0.1234 0.1235 0.1236 0.1237
17/16 0.1457 0.1474 0.1483 0.1488
9/8 0.1485 0.1492 0.1495 0.1497
5/4 0.1496 0.1498 0.1499 0.1499
3/2 0.1499 0.1500 0.1500 0.1500
5 0.1500 0.1500 0.1500 0.1500

Table 3: Numerical values of λτ for various choices of τ and n when the resolution
of the lattice increases on a fixed domain. The lattice spacing is (

√
n
√
2)−1, and

λ0 = 0.15. The first column of this table is the same as the first column of Table 1.

domain scenario, when the size of the spatial domain is held constant, and the lat-
tice spacing decreases. Stein (1999) shows that in this setting, one can consistently
estimate the local properties of the covariance function. Here, λ controls the deriva-
tive of the covariance function at the origin. We use lattice spacing (

√
n
√
2)−1 with

n ∈ {322, 482, 642, 802}, and we set λ0 = 0.15. The results are reported in Table 3.
When τ = 1, λτ is again less than λ0, but in this fixed domain scenario, λ1 does not
improve much as n increases; it changes from λ1 = .1234 when n = 322 to λ1 = .1237
when n = 802. When τ > 1, however, λτ does appear to be approaching λ0 as n in-
creases, even when τ is as small as 17/16. In that case λ17/16 = 0.1457 when n = 322

versus λ17/16 = .1488 when n = 802. The error λ17/16 − λ0 decreases by 72% as we
increase n from 322 to 802 versus a 1.3% decrease in the error λ1 − λ0 for the same
increase in n. As before, λτ approaches λ0 as τ increases in every case.
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4 Simulations

This section presents simulations that provide further support that we can obtain
very accurate parameter estimates with small values of τ . Choosing a small value
of τ defines a relatively small embedding lattice, which we show has a dramatic
effect on the speed of convergence of the Monte Carlo inferential procedures. With
small embedding lattices, the number of imputed values is not large relative to the
number of observations, so the observations hold greater authority in driving the
parameter updates in the iterative algorithms. Using a large embedding lattice leads to
highly correlated Markov chains and slowly converging Monte Carlo EM algorithms.
Standard circulant embedding requires an embedding lattice that is at least two times
larger–and in practice often three or more times larger–than the observation lattice
in each dimension. We show that using approximate covariances allows us to obtain
accurate parameter estimates with τ as small as 1.25.

To demonstrate these points, we focus our simulation studies on the estimation of
a single parameter in the powered exponential covariance function. In Section 5, we
pursue the estimation of multiple parameters in the powered exponential covariance
function, as well as in the Matérn covariance function for the photosynthetically
active radiation data. The isotropic powered exponential covariance is a flexible and
commonly used covariance function defined by

K(h) = σ2 exp
(
− (‖h‖/λ)α

)
+ γ1(h = 0),

where σ2, λ, γ > 0 and α ∈ (0, 2]. We simulate 100 spatial data sets on a lattice of size
n = (64, 64) with spacing (64

√
2)−1 from a mean-zero Gaussian process model with

powered exponential covariance function with σ2 = 4, λ = 0.1, α = 1 (exponential
model), and γ = 0.01. We focus on the estimation of α and specify its prior to
be uniform over (0, 2]. The lattice dimensions, covariance function and parameters,
and prior are the same as those used in a simulation Stroud et al. (2014). Here, all
parameters except for α are assumed to be known and fixed at their true values.

The MCMC procedure consists of Metropolis-Hastings updates of α, where the
acceptance probabilities are tuned to 0.50 during a burn-in period of 1000 iterations.
Circulant embedding with the exact model is achieved with the same procedures out-
lined in Stroud et al. (2014), which give an embedding lattice of size m = (192, 192).
Circulant embedding with approximate covariances is carried out using the methods
in Section 2 with choices of expansion parameter τ = 5/4 and 3/2, giving embedding
lattices of size m = (80, 80) and (96, 96). We compute Rm(h) using a truncation of
the wrapping of K(·) with N = 3, which always produced positive definite covariance
matrices.

The lattice contains n = 4092 observation locations, so for comparison we can also
numerically evaluate the posterior in order to obtain posterior mean α̂j and posterior
standard error se(α̂j) for each simulation j. For each of the MCMC runs, after a
burn-in period of 1000 iterations, we calculate α̃j,k, a running mean after k samples
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of α for the jth simulation. In order to assess the accuracy and the convergence of the
MCMC estimate, we run each chain for 40,000 post-burn-in iterations, and record

kj(ε) = max

{
k :

|α̃j,k − α̂j |
se(α̂j)

> ε

}
,

the last iteration for which the standardized absolute difference between the running
MCMC mean and the posterior mean is larger than ε. We consider ε ∈ {0.05, 0.1, 0.2}.
We also record the time required to reach kj(ε). This allows us to study the number
of iterations and time required to reach a desired level of accuracy. All computations
are completed with a machine running Matlab R2013a on an Intel Core i7-4770 pro-
cessor at 3.40GHz with 32GB of RAM. In Figure 3, we plot the empirical cumulative
distribution function of kj(ε) for each choice of ε, and for each of the three estimation
methods, i.e. embedding with approximate covariances with τ = 5/4 and 3/2 and
embedding with exact covariances.

We see that the approximate methods outperform the exact method at every
tolerance ε. Over 96% of the Markov chains using the approximation τ = 5/4 had
converged to tolerance ε = 0.05 within 20000 iterations, whereas only 51% of the
exact chains had converged to within the same tolerance by 20000 iterations. Put
another way, 89% of the chains using the exact covariances had converged to within
tolerance 0.05 after 40000 iterations, whereas it required just 13,500 iterations for
89% of the chains to converge when the τ = 5/4 approximation was used. We see
similar advantages for the larger tolerances as well. In Figure 4, we show the time
required for the chains to reach desired levels of tolerance. For example, the first
plot shows that after running the chains for 30 minutes, 97% of the chains using
the approximation τ = 5/4 had converged to tolerance 0.05, while just 50% of the
chains using exact covariances had converged. For the weaker tolerance ε = 0.1, 93%
of the exact covariance chains had converged after 30 minutes, whereas 100% of the
approximate covariance chains had converged after just 9 minutes.

Using the same 100 simulated datasets, we implement the Monte Carlo EM al-
gorithm proposed in Stroud et al. (2014). The Monte Carlo EM algorithm specifies
M , the number of conditional simulations over which the loglikelihood is averaged in
each iteration of the algorithm. To see the effect of the choice of M , we use M = 20
and M = 100 to analyze each simulated data set. Since this is a Monte Carlo EM
algorithm, the parameter iterates do not converge to any particular value. For this
reason, we suggest estimating parameters by averaging the parameter iterates after
a “burn-in” period has concluded. We also numerically evaluate the exact likelihood
to obtain maximum likelihood parameter estimates. Thus we can compare root mean
squared differences between the maximum likelihood estimates and the Monte Carlo
EM estimates found using various choices of burn-in iterations and averaging itera-
tions. The results for cutoff embedding and our approximate procedures with τ = 1.25
are plotted in Figure 5. We see that the Monte Carlo EM algorithm with cutoff em-
bedding requires more burn-in iterations for the estimates to stabilize. Further, even
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Figure 5: Contour plots of − log10 of root mean squared deviations between Monte
Carlo EM estimates and maximum likelihood estimates of α, where the mean squared
differences are taken over the 100 simulated datasets. The approximate covariances
use τ = 1.25.

if we set the burn-in time to 100 iterations, the estimates found using approximate
covariances converge faster to the maximum likelihood estimates; when M = 20, the
approximations need fewer than 30 averaging iterations in order for the root mean
squared differences to fall below 10−3.4 ≈ 0.0004, whereas cutoff embedding needs 200
iterations to reach this tolerance. Thus, our approximate procedures provide remark-
able reductions in the number of iterations required for both burn-in and averaging
in the Monte Carlo EM algorithm.

5 Photosynthetically Active Radiation Data

Aqua is a NASA satellite mission whose central aim is to collect information about
Earth’s water cycle. As is typical of most polar-orbiting satellites, Aqua’s measure-
ments do not attain complete global coverage on short time scales; a typical daily map
of Aqua data contains large swaths of missing values at locations over which Aqua
did not orbit. Our goal in this section is to provide complete spatial maps of Photo-
synthetically Active Radiation (PAR) over a region for which there are a substantial
number of missing values. PAR, which is detected by the Moderate Resolution Imag-
ing Spectrometer (MODIS), quantifies the abundance of light at wavelengths between
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Figure 6: Grayscale map of photosynthetically active radiation from December 1,
2013. Missing values are black, and land pixels are white; the diagonal strip of land
is Mexico’s Baja California peninsula. The resolution is 1/12◦ in both latitude and
longitude.

400 and 700 nm, the spectral range of radiation that organisms use in photosynthesis,
and thus is an important quantity affecting biological systems. In Figure 6, we plot a
map of a daily gridded data product of PAR values located west of Mexico’s Baja Cal-
ifornia peninsula. The data can be downloaded from http://oceancolor.gsfc.nasa.gov,
and this particular dataset is from December 1, 2013. PAR values derived from Aqua’s
measurements are reported only over the oceans. There is a triangular region of miss-
ing observations, as well as a few missing along the coasts. We aim to interpolate the
missing observations with values that match the statistical properties of the observed
process to obtain physically plausible reconstructions of PAR. To accomplish this,
we use the conditional simulations of the missing values that are required as part
of the computationally efficient estimation methods presented in this paper, and we
report an ensemble of the conditional simulations to provide accurate indications of
the uncertainty in the interpolations.

The PAR lattice presented in Figure 6 contains 120 evenly-spaced longitude values
and 100 evenly-spaced latitude values at a resolution of 1/12◦ in both latitude and
longitude, for a total of 12,000 lattice locations. There are 2,412 lattice locations for
which PAR is missing, due either to the pixel being a land pixel or the value being
genuinely missing, giving 9,588 observed PAR values. The data do not possess any
obvious deviations from the isotropic Gaussian assumption, nor are there any dis-
cernible trends in the data. After subtracting the empirical mean of the observations,
we consider three covariance models for PAR anomalies: (1) mean-zero isotropic pow-
ered exponential covariance with zero nugget and unknown (σ2, λ, α), (2) mean-zero
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isotropic Matérn covariance with zero nugget,

Kθ(h) = σ2 (‖h‖/λ)νKν(‖h‖/λ)
2ν−1Γ(ν)

,

and unknown (σ2, λ, ν), and (3) a mean-zero model with aliased spectral density

fδ(ω) = σ2cλ,ν

[
1 +

(
λ

δ

)2(
sin2

(
δω1

2

)
+ sin2

(
δω2

2

))]−ν−1

. (5)

We refer to the model in (5) as the quasi Matérn model due to its similarity to
the Matérn spectral density and give an asymptotic justification for this name in
Appendix B of the Supplementary Material, along with a more general specification.
The parameters (σ2, λ, ν) have the same interpretations as in the Matérn model. The
coefficient cλ,ν is a normalizing constant, computed numerically. The quasi Matérn is
defined in terms of its aliased spectral density, and thus no wrapping of covariances
or spectral densities is required for the computations described in this paper; we
simply evaluate fδ(ω) at the Fourier frequencies associated with m and transform
the resulting array of spectral density values with an inverse FFT to obtain the
associated covariances. We assume (σ2, λ, ν) are unknown.

We implement the MCMC methods to estimate the parameters in all models.
To simplify notation across the models, we define θ = (λ, α) if the model is the
powered exponential or θ = (λ, ν) if the model is either the Matérn or quasi Matérn.
We specify prior π(σ2, θ) ∝ π(θ)/σ2, where π(θ) = 1/2(1 + λ/2)−2 in the powered
exponential model, which places a uniform prior on α over (0, 2), and π(θ) = 1/4(1+
λ/2)−2(1 + ν/2)−2 in the Matérn and quasi Matérn models. We update θ with a
MH algorithm with a bivariate normal proposal distribution on the log scale. The
full conditional π(σ2|θ,Z) is inverse gamma IG((m− 1)/2, S2(θ)/2), where S2(θ) =
Z ′C(θ)−1Z, and C(θ) is the correlation matrix corresponding to parameter vector
θ. This is the standard conjugate family for variance parameter σ2. The bivariate
lognormal proposal distribution for λ and ν is tuned to have acceptance probability
of 0.5 during 5,000 burn-in iterations. In cutoff embedding, we use an embedding
lattice of size m = (336, 336), which is highly composite and has 112,876 lattice
locations. Our approximate methods are implemented with τ = 1.25, which gives
embedding lattices of size m = (125, 150) and m = 18, 750 total lattice locations. We
wrap the covariances with N = 2, which always resulted in positive definite covariance
matrices, and no wrapping is required for the quasi Matérn covariance.

The multiple spatial covariance parameters, especially the variance and range
parameters, tend to be highly correlated in this example, and thus the MCMC al-
gorithms return highly correlated parameter iterates, even though we can sample
from the full conditional distribution of the variance parameter. Since the most time-
consuming step in the algorithm is conditionally simulating the missing data on the
embedding lattice, we propose taking several MH steps of the covariance parameters
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Figure 7: Trace plots for Matérn range parameter from the PAR data, using cutoff
embedding and approximate embedding with τ = 1.25

per conditional simulation, and we obtained good results when we took four MH steps
per conditional simulation. The Markov chains are each run for 50,000 iterations. We
provide trace plots for the Matérn range parameter in Figure 7, showing an exam-
ple of the smaller autocorrelation in the chain that uses approximate embedding,
which is typical of all parameters and consistent with the results in the simulation
study. The lag 10 autocorrelations for the Matérn range parameters are 0.967 for
cutoff embedding and 0.807 for approximate embedding. With the help of Matlab’s
profiling capabilities, we record the CPU time per iteration attributed to the various
computational tasks required for the MCMC algorithms. We report those results in
Figure 8. The three most time-consuming tasks are the conditional simulations, the
loglikelihoods required for evaluating the MH acceptance probabilities, and the con-
struction of the covariance arrays. The approximate methods are faster overall than
cutoff embedding, which required 0.88 seconds per iteration with the powered expo-
nential covariance and 0.87 seconds per iteration with the Matérn covariance, whereas
the approximate methods required 0.29 seconds and 0.40 seconds per iteration for the
powered exponential and the Matérn models. The approximate methods devoted a
significant amount of time–0.19 seconds per iteration for the Matérn–to construct-
ing the periodic covariance arrays, a consequence of the wrapping of the covariances.
The approximate methods for the quasi Matérn devote a negligible amount of time
to constructing the covariance arrays and is the fastest overall of the three methods,
taking 0.22 seconds per iteration, nearly four times faster than the Matérn with cutoff
embedding. All methods use a preconditioner corresponding to the submatrix of the
complete data precision matrix and require roughly 50 iterations for the precondi-
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Figure 8: CPU time required per MCMC iteration with various models and embedding
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tioned conjugate gradient algorithms to converge on average. We experimented with
several forms of a preconditioner based on the Stein et al. (2004) likelihood approx-
imation, which can be made to converge in a smaller number of iterations but was
slower overall in this instance.

We now investigate the quality of the fitted models in terms of exact loglikelihood.
There are several ways to construct fitted models from the Markov chains, one of
which is to compute Kθ̂(h), where θ̂ as an average of the parameter iterates in the
chain. We refer to this as the averaged parameter fitted model. For this estimate, we
thin the chain, taking only every tenth iterate of the 45,000 post-burn-in iterations
for the average. We also construct separate fitted models by averaging the covariances
associated with the parameter iterates. Specifically, we compute

K̂(h) =
1

B

B∑

i=1

Kθi(h), (6)

where θi is the ith thinned MCMC sample, with B = 4500 samples. We refer to the
estimate in (6) as the averaged covariance fitted model. In cases where the loglike-
lihood has irregularly shaped contours, the averaged parameter model could differ
substantially from the averaged covariances model. We note that in constructing the
covariance estimates, we always use the covariance function Kθ, not Rm, because the
approximations are not guaranteed to accurately reflect the target covariance at large
spatial lags (see Figure 2). When using the quasi Matérn model we approximateKθ(h)
by discretizing the integral in (2) over a very fine grid with m = 4n, which is still effi-
cient to compute with FFT algorithms. In Table 4, we include the exact loglikelihood
values of the various model estimates. The Matérn and quasi matern models provide
better fits than the powered exponential model in terms of loglikelihood. All of the
fitted Matérn and quasi Matérn models agree to within a few loglikelihood units,

16



Loglikelihood
Model Method Averaged Covariance Averaged Parameter

Powered exp. Cutoff Embedding −52.66 −53.16
Powered exp. Approximate, τ = 5/4 −51.32 −52.04

Matérn Cutoff Embedding 0 −0.57
Matérn Approximate, τ = 5/4 −0.03 −0.54

quasi Matérn Approximate, τ = 5/4 −1.14 −1.65

Table 4: Table of loglikelihoods for the three models and two methods. We compute
the exact Gaussian loglikelihoods for the model estimate constructed by averaging
the covariances and by averaging the parameters. Loglikelihood differences from that
of the Matérn model fit with the approximate method are reported.

which is negligible for a dataset of this size. It is actually quite remarkable that even
though the quasi Matérn model is not equivalent to the Matérn model, in the sense
that the aliased spectral density of the Matérn is not equal to the spectral density
in (5), both fitted models give nearly the same loglikelihoods, an indication of the
flexibility of the two models. Averaging covariances provided slightly better fits than
averaging parameters for every model. The models obtained by approximate meth-
ods are roughly equal in terms of loglikelihood to the corresponding model estimate
obtained by using cutoff embedding, and they give roughly equal posterior mean pa-
rameter estimates–for example the Matérn smoothness parameters are estimated to
be 0.8578 (s.d. 0.02) with cutoff embedding and 0.8595 (s.d. 0.02) with approximate
embedding. Thus, the approximations provided computational benefits without any
sacrifice in the quality of the fitted models they produced.

Finally, in Figure 9, we plot conditional simulations of the PAR process over the
ocean pixels of the observation region. The three conditional simulations use three
different sets of parameters taken from the quasi Matérn Markov chain at iterations
10,000, 20,000, and 30,000, so the conditional simulations incorporate the uncertainty
of the parameters. The conditional simulations produce PAR values over the land
pixels as well, but we do not plot those since they are not reported in Aqua MODIS
datasets. The PAR values in the three conditional simulations are exactly the same
except for a few pixels along the coasts and the pixels in the triangular swath indi-
cated by the thin black lines, which merge neatly with the observed values on the
borders of the swath. The interpolated values also match the second-order properties
of the rest of the dataset because they are simulated from a covariance model that is
fit to the observed data. In scientific applications where it is necessary to have a com-
plete map of PAR values as an input into larger model, the three (or possibly more)
conditional simulations could be used to propagate the uncertainty associated with
the interpolations and the fitted spatial model through the analysis. The methods
discussed in this paper offer a way to produce an ensemble of complete interpolated
maps in a computationally efficient manner.

17



La
tit

ud
e

Longitude

Conditional Simulation 1

−118 −116 −114 −112 −110
20

22

24

26

28

Longitude

Conditional Simulation 2

−118 −116 −114 −112 −110
Longitude

Conditional Simulation 3

 

 

E
in

st
ei

ns
 (

m
ol

es
 m−

2  D
ay

−
1 )

−118 −116 −114 −112 −110
0

10

20

30

40

50

Figure 9: Three conditional simulations with Quasi Matérn covariance parameters
taken from MCMC chain at iterations 10,000, 20,000, and 30,000.

6 Discussion

Numerical methods based on circulant embedding of covariance matrices are powerful
tools for statistical computations involving lattice data and stationary models. Not
only do they avoid the O(n3) flops required for Cholesky decompositions of covariance
matrices, they circumvent the need to store the O(n2) covariance matrices. The use of
circulant embedding for simulation of stationary Gaussian processes on regular lattices
has a mature history, and the recent work of Stroud et al. (2014) is an important step
forward in uncovering ways to exploit circulant embedding for making inference from
lattice data.

We demonstrate that the discrete spectral approximation can be advantageously
employed in order to reduce the size of the embedding lattice, while preserving peri-
odicity on the embedding lattice, positive definiteness, and the ability to exploit fast
computational algorithms. This approximation allows the user to control its accuracy
via an expansion parameter, and our numerical studies show that, with expansion
parameters as small as 1.25 or 1.5, the bias introduced by this approximation is neg-
ligible among a range of commonly encountered scenarios of spatial correlation. The
size of the bias also decreases with the size of the dataset, both in increasing domain
and fixed domain scenarios. While the approximations are accurate at short spatial
lags and give rise to likelihood functions that perform well for estimating parameters,
the approximation to individual covariances may not be accurate at large spatial lags
(see Figure 2), and thus we recommend using the target covariance function with
the estimated parameters to characterize covariances. We also provide novel meth-
ods, along with the necessary theoretical support, for computing the discrete spectral
approximation when the covariance function is specified.

Our simulation studies demonstrate the importance of reducing the size of the
embedding lattice. When cutoff embedding is employed, the embedding lattice is
at least four times the size of the observation lattice, and the particular version
described in Stroud et al. (2014) requires an embedding lattice at least nine times
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the size of the observation lattice. We found that both MCMC and Monte Carlo
EM parameter estimates are slow to converge when cutoff embedding is employed.
The use of approximate methods that decrease the size of the embedding lattice
substantially improves the convergence of the parameter estimates, over a range of
accuracy tolerances, as compared to numerically evaluated posterior means.

Extremely long correlation ranges, very smooth data, or small observation lattices
may require expansion parameters larger than 1.5. However, we expect that in situa-
tions where the spatial correlation is very strong, cutoff embedding with m = 3n will
likely not produce positive definite covariance arrays. We expect that the embedding
lattice required for cutoff embedding to produce positive definite covariance arrays
will generally always be larger than the lattice required for the approximate methods
to produce extremely sharp approximations. Making the previous conjecture more
precise is an avenue for future work. When analyzing very strongly correlated spatial
data, we suggest conducting a sensitivity analysis with a few values of τ ∈ [1.25, 2],
with the reminder that larger values of τ will require more iterations to achieve con-
vergence.

We implemented the MCMC algorithms to analyze satellite observations of pho-
tosynthetically active radiation. Three spatial models were considered, each of them
described by three parameters, and we used both cutoff embedding and the discrete
spectral approximation in estimating them. Based on our analysis, we suggest using
multiple MH steps per conditional simulation in order to improve the MCMC algo-
rithm, since the parameter iterates tended to be highly correlated, and the likelihood
given the full dataset on the embedding lattice is cheap to evaluate compared to the
cost of the conditional simulations. Although we did not conduct a formal analysis of
the trace plots, the use of the discrete spectral approximation improved their appear-
ance compared to those obtained using cutoff embedding, which is consistent with
the results of the simulation study. Further, the computation time per iteration of
the MCMC algorithms was smaller with the use of the approximate methods, and
the speedup was greatest when the aliased spectral density was modeled directly,
since this approach does not require spectral wrapping or evaluation of the Matérn
covariance function. Based on these results, we strongly recommend modeling the
covariances in the spectral domain with an aliased spectral density, and we suggest
the quasi Matérn as a flexible model.

Several aspects of the material presented here can be easily generalized. The pow-
ered exponential and Matérn covariance functions are isotropic, but we do not require
isotropy or even geometric anisotropy, only stationarity. The quasi Matérn model has
a generalization to d dimensions, which we present in Appendix B of the Supplemen-
tary Material. We also assume that the lattice has equal spacing in every dimension,
but the models and methods are easily generalized to situations with different spac-
ing δj in each dimension j. In this case, the aliased spectral densities are defined

on
∏d

j=1[0, 2π/δj]. The analyses that we presented used a common expansion factor
for each dimension, but this is not required, and one can see how it may be com-
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putationally advantageous to use a smaller expansion factor in a dimension that is
very large or has weak correlation along that dimension. The methods are applicable
for multivariate spatial data as well. Guinness et al. (2014) provide a framework for
defining multivariate spatial lattice models in the spectral domain.

Appendices and Matlab code for reproducing the results appearing in this paper
are available as online supplementary material.
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A Nested Block Circulant Matrices

A matrix is block circulant if it can be written in block form as

K =




K0 K1 K2 · · · Kn−1

Kn−1 K0 K1 · · · Kn−2
...

...
...

...
K1 K2 K3 · · · K0


 ,

where the blocks are all the same size and may be of size 1, in which case we also say
that the matrix is circulant. Nested block circulant matrices are defined recursively:
a matrix is nested block circulant if it is block circulant, and each subblock Kj is
also nested block circulant. Covariance matrices have the additional properties that
they are symmetric and positive definite. Symmetry implies that K0 is symmetric,
and Kn−j = K ′

j .

B Quasi Matérn covariance

The quasi Matérn model presented in Section 5 has a generalization to d dimensions.
In this case, the spectral densities are defined on [−π/δ, π/δ]d, and the model is

fδ(ω) = σ2

(
1 +

(α
δ

)2
(

d∑

j=1

sin2

(
δωj

2

)))−ν−d/2

.

This expression converges pointwise as δ → 0 to

σ2

(
1 +

(α
2

)2
‖ω‖2

)
−ν−d/2

,

which is one parametric form for the spectral density of the isotropic Matérn covari-
ance function, justifying the name quasi Matérn.
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C Proof

The following lemma is a multidimensional version of the Poisson summation formula
and is of particular use for approximating the covariance functions introduced in
Section 2.

Lemma C.1. If fδ is the continuous aliased spectral density for K, then Rm(h) =∑
j∈Zd K(h+ δj ◦m), where j ◦ m = (j1m1, . . . , jdmd).

To simplify the notation, we set δ = 1 in the proof. It is no more difficult to prove
with arbitrary δ, only more cumbersome notationally.

Proof. We write:

N∑

j1=−N

· · ·
N∑

jd=−N

K((h1 + j1m1, . . . , hd + jdmd))

=

N∑

j1=−N

· · ·
N∑

jd=−N

∫

[0,2π]d
f1(ω)eiω

′heiω1j1m1 · · · eiωdjdmddω

=

∫

[0,2π]d
f1(ω)eiω

′h

(
N∑

j1=−N

eiω1j1m1

)
· · ·
(

N∑

jd=−N

eiωdjdmd

)
dω. (7)

Since the integrand in (7) is periodic in each dimension, integrating over [0, 2π]d is
equivalent to integrating over

d∏

k=1

[
− π

mk

, 2π − π

mk

]
=
⋃

ℓ∈Jm

d∏

k=1

[
2π

mk

(ℓk − 1/2),
2π

mk

(ℓk + 1/2)

]
def.
=

⋃

ℓ∈Jm

Aℓ,

so that the integral in (7) can be written as

∑

ℓ∈Jm

∫

Aℓ

f1(ω)eiω
′h

(
N∑

j1=−N

eiω1j1m1

)
· · ·
(

N∑

jd=−N

eiωdjdmd

)
dω.

The quantities in parentheses converge to periodic delta functions with period 2π/mk

in ωk (?, Section 1.17(iii)). Since f1 is continuous, the integral of the integrand
f1(ω)eiω

′h with respect to the periodic delta functions is equal to the integrand eval-
uated at the Fourier frequencies,

lim
N→∞

∑

ℓ∈Jm

∫

Aℓ

f1(ω)eiω
′h

(
N∑

j1=−N

eiω1j1m1

)
· · ·
(

N∑

jd=−N

eiωdjdmd

)
dω

=
(2π)d

m

∑

ℓ∈Jm

f1(ωℓ)e
iωℓh = Rm(h)

where ωℓ = (2πℓ1/m1, . . . , 2πℓd/md).
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